CSE 401 — Compilers

x86-64 Lite for Compiler Writers
A quick (a) introduction or (b) review

[pick one]
Hal Perkins
Winter 2017

Agenda

e QOverview of x86-64 architecture

— Core part only, a bit beyond what we need for the
project, but not much

 Upcoming lectures...

— Mapping source language constructs to x86
— Code generation for MiniJava project

* Rest of the quarter...

— More sophisticated back-end algorithms
— Survey of compiler optimizations

UW CSE 401 Winter 2017 J-2

Some x86-64 References

(Links on course web - * = most useful)

o **x86-64 Instructions and ABI

— Handout for University of Chicago CMSC 22620,
Spring 2009, by John Reppy

e *x86-64 Machine-Level Programming

— Earlier version of sec. 3.13 of Computer Systems:
A Programmer’s Perspective, 2nd ed. by Bryant &
O’Hallaron (CSE 351 textbook)

* Intel architecture processor manuals

x86-64 Main features

* 16 64-bit general registers; 64-bit integers
(but int is 32 bits usually; long is 64 bits)

* 64-bit address space; pointers are 8 bytes
e 16 SSE registers for floating point, simd

* Register-based function call conventions
* Additional addressing modes (pc relative)
e 32-bit legacy mode

 Some pruning of old features

x86-64 Assembler Language

* Target for our compiler project
But, the nice thing about standards...

* Two main assembler languages for x86-64

— Intel/Microsoft version — what’s in the Intel docs

— AT&T/GNU assembler — what we’re generating
and what’s in the linked handouts and 351 book

* Use gcc —S to generate asm code from C/C++ code

 Slides use gcc/AT&T/GNU syntax

UW CSE 401 Winter 2017 J-5

Intel vs. GNU Assembler

 Main differences between Intel docs and gcc assembler

Intel/Microsoft

AT&T/GNU as

Operand order: op a,b

a =aop b (dst first)

b =a op b (dst last)

Memory address

[baseregister+offset]

offset(baseregister)

Instruction mnemonics

mov, add, push, ...

movq, addq, pushq [explicit
operand size added to end]

Register names

rax, rbx, rbp, rsp, ...

%rax, %rbx, %rbp, %rsp, ...

Constants

17,42

$17, 542

Comments

; to end of line

to end of line or /* ... */

* Intel docs also include many complex, historical instructions
and artifacts that aren’t commonly used by modern compilers
—and we won’t use them either

UW CSE 401 Winter 2017

M-6

x86-64 Memory Model

e 8-bit bytes, byte addressible

* 16-, 32-, 64-bit words, double words and quad
words (Intel terminology)

— That’s why the ‘g’ in 64-bit instructions like movq,
addq, etc.

e Data should usually be aligned on “natura
boundaries for performance, although unaligned
accesses are generally supported — but with a big
performance penalty on many machines

e Little-endian —address of a multi-byte integer is
address of low-order byte

III

X86-64 registers

* 16 64-bit general registers
— %rax, %rbx, %rcx, %rdx, %rsi, %rdi, %rbp, %rsp,
%r8-%rl15
* Registers can be used as 64-bit integers or
pointers, or as 32-bit ints

— Also possible to reference low-order 16- and 8-bit
chunks —we won’t for most part

* To simplify our project we’ll use only 64-bit
data (ints, pointers, even booleans!)

Instruction Format

* Typical data manipulation instruction
opcode src,dst
* Meaning is
dst «— dst op src
* Normally, one operand is a register, the other is a

register, memory location, or integer constant

— Can’t have both operands in memory — can’t encode
two memory addresses in a single instruction (e.g.,

cmp, mov)

UW CSE 401 Winter 2017 39

x86-64 Memory Stack

* Register %rsp points to the “top” of stack
— Dedicated for this use; don’t use otherwise

— Points to the last 64-bit quadword pushed onto
the stack (not next “free” quadword)

— Should always be quadword (8-byte) aligned

* It will start out this way, and will stay aligned unless
your code does something bad

e Should be 16-byte aligned on most function calls

— Stack grows down

UW CSE 401 Winter 2017 J-10

Stack Instructions

pushq src

%rsp «— %rsp — 8; memory|[%rsp] «— src
(e.g., push src onto the stack)

popq dst

dst «— memory[%rsp]; %rsp «— %rsp + 8
(e.g., pop top of stack into dst and logically remove
it from the stack)

UW CSE 401 Winter 2017 J-11

Stack Frames

* When a method is called, a stack frame is traditionally
allocated on the top of the stack to hold its local
variables

* Frame is popped on method return

e By convention, %rbp (base pointer) points to a known
offset into the stack frame
— Local variables referenced relative to %rbp

— Base pointer common in 32-bit x86 code; less so in x86-64
code where push/pop used less & stack frame has a fixed
size so locals can be referenced from %rsp easily

— We will use %rbp in our project — simplifies addressing of
local variables and compiler bookkeeping

UW CSE 401 Winter 2017 J-12

Operand Address Modes (1)

* These should cover most of what we’ll need
movq $17,%rax # store 17 in %rax
movqg %rcx,%rax # copy %rcx to %rax
movq -16(%rbp),%rax # copy memory to %rax
movqg %rax,-24(%rbp) # copy %rax to memory

* References to object fields work similarly — put
the object’s memory address in a register and use
that address plus an offset

« Remember: can’t have two memory addresses in
a single instruction

UW CSE 401 Winter 2017 J-13

Operand Address Modes (2)

e Amem

ory address can combine the contents of

two registers (with one optionally multiplied by

2,4, or

8) plus a constant:

basereg + indexreg*scale + constant

or sma
* Examp

Main use of general form is for array subscripting

| computations - if the compiler is clever
e: suppose we have an array of 8-byte ints

with ac

dress of the array A in %rcx and subscript |

in %rax. Code to store %rbx in Ali]
movqg %rbx,(%rcx,%rax,8)

UW CSE 401 Winter 2017 J-14

Basic Data Movement and Arithmetic
Instructions

movq src,dst incq dst

dst «— src dst «—dst+1
addq src,dst decq dst

dst «— dst + src dst «—dst-1
subqg src,dst negq dst

dst «— dst — src dst «— - dst

(2’s complement
arithmetic negation)

UW CSE 401 Winter 2017 J-15

Integer Multiply and Divide

imulq src,dst idivg src
dst «— dst * src Divide %rdx:%rax by src
dst must be a register (%rdx:%rax holds sign-

extended 128-bit value;
cannot use other registers

cqto for division)
%rdx:%rax «— 128-bit sign %rax «— quotient
extended copy of %rax %rdx «— remainder

(why??? To prep
numerator for idivq!)

UW CSE 401 Winter 2017 J-16

Bitwise Operations

andq src,dst notq dst

dst «— dst & src dst «— ~ dst

orq src,dst (logical or 1’s complement)

dst «— dst | src

xorq src,dst
dst «— dst A src

UW CSE 401 Winter 2017 J-17

Shifts and Rotates

shlg dst,count
dst shifted left count bits rolg dst,count

shrq dst,count dst «— dst rotated left
dst «— dst shifted right count bits
count bits (O fill) rorq dst,count

sarq dst,count dst «— dst rotated right
dst < dst shifted right count bits

count bits (sign bit fill)

UW CSE 401 Winter 2017

J-18

Uses for Shifts and Rotates

* Can often be used to optimize multiplication and
division by small constants

— If you're interested, look at “Hacker’s Delight” by Henry
Warren, A-W, 2" ed, 2012
* Lots of very cool bit fiddling and other algorithms
— But be careful — be sure semantics are OK

* Example: right shift is not the same as integer divide for
negative numbers (why?)

 There are additional instructions that shift and rotate
double words, use a calculated shift amount instead
of a constant, etc.

UW CSE 401 Winter 2017 J-19

Load Effective Address

* The unary & operator in C/C++
leaq src,dst # dst «— address of src
— dst must be a register

— Address of src includes any address arithmetic or
indexing

— Useful to capture addresses for pointers,
reference parameters, etc.

— Also useful for computing arithmetic expressions
that match rl+scale*r2+const

UW CSE 401 Winter 2017 J-20

Unconditional Jumps

jmp dst

%rip «— address of dst

dst address can also be indirect using the
address in a register or memory location (*reg
or *(reg))

UW CSE 401 Winter 2017 J-21

Conditional Jumps

e Most arithmetic instructions set “condition
code” bits to record information about the

result (zero, non-zero, >0, etc.)
— True of addq, subq, andqg, org; but not imulq,
idivg, leag
* Other instructions that set condition codes
cmpq src,dst # compare dst to src (e.g., dst-src)
testq src,dst # calculate dst & src (logical and)
— These do not alter src or dst

UW CSE 401 Winter 2017 J-22

Conditional Jumps Following
Arithmetic Operatlons

jz label # jump if result =

jnz label # jump if result !-
je label # jump if result >0
jng label # jump if result <=0
jge label # jump if result>=0
jnge label #jump if result <0
jl label #jump if result <0
jnl label # jump if result>=0
jle label # jump if result <=0
jnle label # jump if result >0

* Obviously, the assembler is providing multiple opcode
mnemonics for several actual instructions

UW CSE 401 Winter 2017 J-23

Compare and Jump Conditionally

 Want: compare two operands and jump if a
relationship holds between them

* Would like to do this
jmp.,,g opl,0p2,label

but can’t, because 3-operand instructions
can’t be encoded in x86-64

(also true of most other machines)

UW CSE 401 Winter 2017 J-24

cmp and jcc

* |nstead, we use a 2-instruction sequence
cmpqg opl,op2
Jec label
where j_. is a conditional jump that is taken if

the result of the comparison matches the
condition cc

UW CSE 401 Winter 2017 J-25

Conditional Jumps Following

Arithmetic Operations

je label
jne label
jg label
jng label
jge label
jnge label
jl label
jnl label
jle label
jnle label

jump if opl == op2
jump if opl = 0op2
jump if opl > op2
jump if opl <= op2
jump if opl >= op?2
jump if opl < op2
jump if opl < op2
jump if opl >= op2
jump if opl <= op2
jump if opl > op?2

e Again, the assembler is mapping more than one mnemonic to some
machine instructions

UW CSE 401 Winter 2017

J-26

Function Call and Return

 The x86-64 instruction set itself only provides for
transfer of control (jump) and return

e Stack is used to capture return address and recover it

* Everything else — parameter passing, stack frame
organization, register usage — is a matter of
convention and not defined by the hardware

UW CSE 401 Winter 2017 3-27

call and ret Instructions

call label
— Push address of next instruction and jump
— %rsp «— %rsp —8; memory[%rsp] «— %rip
%rip «— address of label

— Address can also be in a register or memory as with jmp — we’ll
use these for dynamic dispatch of method calls (more later)

— Pop address from top of stack and jump
— %rip «— memory[%rsp]; %rsp «— %rsp + 8

— WARNING! The word on the top of the stack had better be an
address and not some leftover data

UW CSE 401 Winter 2017 J-28

enter and leave

 Complex instructions for languages with
nested procedures
— enter can be slow on current processors — best
avoided —i.e., don’t use it in your project
— |leave is equivalent to

mov %rsp,%rbp
pop %rbp

and is generated by many compilers. Fits in 1 byte,
saves space. Not clear if it’s any faster.

UW CSE 401 Winter 2017 J-29

X86-64-Register Usage

e %rax — function result

 Arguments 1-6 passed in these registers in order
— %rdi, %rsi, %rdx, %rcx, %r8, %r9
— For Java/C++ “this” pointer is first argument, in %rdi
* More about “this” later
* %rsp — stack pointer; value must be 8-byte
aligned always and 16-byte aligned when calling a
function

* %rbp — frame pointer (optional use)
— We'll use it

X86-64 Register Save Conventions

* A called function must preserve these registers
(or save/restore them if it wants to use them)

— %rbx, %rbp, %r12-%r15

* %rspisn’t on the “callee save list”, but needs to
be properly restored for return

* All other registers can change across a function

call

— Debugging/correctness note: always assume every
called function will change all registers it is allowed to

x86-64 Function Call

e Caller places up to 6 arguments in registers, rest
on stack, then executes call instruction (which
pushes 8-byte return address)

* On entry, called function prologue sets up the
stack frame:
pushq %rbp # save old frame ptr
movqg %rsp,%rbp # new frame ptr is top of
stack after ret addr and old
rbp pushed
subg Sframesize,%rsp # allocate stack frame

X86-64 Function Return

e Called function puts result (if any) in %rax and
restores any callee-save registers if needed

e Called function returns with:
movq %rbp,%rsp # or use leave instead of

POP(Q %rbp H movq/popq
ret

* |f caller allocated space for arguments it
deallocates as needed

Caller Example

* n=sumOf(17,42)
movq $42,%rsi #load arguments
movg $17,%rdi
call sumOf # jump & push ret addr
movg %rax,offset (%rbp) # store result

UW CSE 401 Winter 2017 J-34

Example Function

* Source code
int sumOf(int x, inty) {
int a, int b;
a=x;
b=a+y;
return b;

UW CSE 401 Winter 2017 J-35

int sumOf(int x, inty) {
int a, int b;

Stack Frame for sumOf 225,

return b;

}

UW CSE 401 Winter 2017 J-36

Assembly Language Version

int sumOf(int x, int y) {

inta,intb;
sumOf:
pushq %rbp # prologue
movqg %rsp,%rbp
subqg $16,%rsp
a=x;
movqg %rdi,-8(%rbp)

#

#}

b=a+y;

movq -8(%rbp),%rax
addq %rsi,%rax
movq %rax,-16(%rbp)
return b;

movqg -16(%rbp),%rax
movg %rbp,%rsp
popq %rbp

ret

UW CSE 401 Winter 2017

J-37

The Nice Thing About Standards...

* The above is the System V/AMDG64 ABI
convention (used by Linux, OS X)

* Microsoft’s x64 calling conventions are slightly
different (sigh...)

— First four parameters in registers %rcx, %rdx, %r8,
%r9: rest on the stack

— Stack frame needs to include empty space for called

function to save values passed in parameter registers
if desired

* Not relevant for us, but worth being aware of it

Coming Attractions

* Now that we’ve got a basic idea of the x86-64
instruction set, we need to map language
constructs to x86-64

— Code Shape

 Then need to figure out how to get compiler
to generate this and how to bootstrap things

to run the compiled programs

UW CSE 401 Winter 2017 J-39

