
CSE	401	–	Compilers	

ASTs,	Modularity,	and	the	Visitor	Pa>ern	
Hal	Perkins	
Winter	2017	

UW CSE 401 Winter 2017 H-1

Agenda	

•  Today:	
– AST	operaFons:	modularity	and	encapsulaFon	
– Visitor	pa>ern:	basic	ideas	and	variaFons	
– Some	of	the	“why”	behind	the	“how”	

•  Covered	in	secFons:	
– RepresentaFon	of	ASTs	as	a	tree	of	Java	objects	
– Parser	semanFc	acFons	and	AST	generaFon	
– AST/Parser/Visitor	classes	in	project	code	

UW CSE 401 Winter 2017 H-2

Abstract	Syntax	Trees	(ASTs	-	review)	

•  Idea:	capture	the	essenFal	structure	of	a	program;	
omit	extraneous	details	
–  i.e,	only	what	the	rest	of	the	compiler	needs;	omit	things	
used	only	to	guide	the	parse	(e.g.,	punctuaFon,	chain	
producFons)	

•  Java	implementaFon	
–  Simple	tree	node	objects	(basically	structs/records)	

•  In	addiFon	to	subtree	pointers,	usually	include	other	useful	
informaFon	like	source	program	locaFons	(e.g.,	line/character	
numbers),	links	to	semanFc	(symbol	table)	informaFon	(later),	…	

•  But	not	much	more!	
–  Use	type	system	and	inheritance	to	factor	common	
informaFon	and	allow	polymorphic	treatment	of	related	
nodes	

UW CSE 401 Winter 2017 H-3

OperaFons	on	ASTs	

•  Once	we	have	the	AST,	we	may	want	to:	
– Print	a	readable	dump	of	the	tree	(pre>y	prinFng)	
– Do	staFc	semanFc	analysis:	

•  Type	checking	
•  Verify	that	things	are	declared	and	iniFalized	properly	
•  Etc.	etc.	etc.	etc.	

– Perform	opFmizing	transformaFons	on	the	tree	
– Generate	code	from	the	tree,	or	
– Generate	another	IR	from	the	tree	for	further	
processing	

UW CSE 401 Winter 2017 H-4

Modularity	

•  Classic	slogans:	
– Do	one	thing	well	
– Minimize	coupling,	maximize	cohesion	
–  Isolate	operaFons/abstracFons	in	modules	
– Hide	implementaFon	details	

•  Okay,	so	where	does	the	typechecker	module	
in	MiniJava	belong?	

UW CSE 401 Winter 2017 H-5

Where	do	the	OperaFons	Go?	

•  Pure	“object-oriented”	style	
–  Really,	really,	really	smart	AST	nodes	
–  Each	node	knows	how	to	perform	every	operaFon	on	itself	
	 	public	class	WhileNode	extends	StmtNode	{	
	 				public	WhileNode(…);	
	 				public	typeCheck(…);	
	 				public	StrengthReducFonOpFmize(…);	
	 				public	generateCode(…);	
	 				public	pre>yPrint(…);	
	 				…	
	 	}	

UW CSE 401 Winter 2017 H-6

CriFque	

•  This	is	nicely	encapsulated	–	all	details	about	a	
WhileNode	are	hidden	in	that	class	

•  But	it	is	poor	modularity	
•  What	happens	if	we	want	to	add	a	new	OpFmize	
(or	any	other)	operaFon?		
– Have	to	open	up	every	node	class	

•  Furthermore,	it	means	that	the	details	of	any	
parFcular	operaFon	(opFmizaFon,	type	checking)	
are	sca>ered	across	the	node	classes	

UW CSE 401 Winter 2017 H-7

Modularity	Issues	

•  Smart	nodes	make	sense	if	the	set	of	
operaFons	is	relaFvely	fixed,	but	we	expect	to	
need	flexibility	to	add	new	kinds	of	nodes	

•  Example:	graphics	system	
– OperaFons:	draw,	move,	iconify,	highlight	
– Objects:	textbox,	scrollbar,	canvas,	menu,	dialog	
box,	plus	new	objects	defined	as	the	system	
evolves	

UW CSE 401 Winter 2017 H-8

Modularity	in	a	Compiler	

•  Abstract	syntax	does	not	change	frequently	
over	Fme	
∴	Kinds	of	nodes	are	relaFvely	fixed	

•  As	a	compiler	evolves,	it	is	common	to	modify	
or	add	operaFons	on	the	AST	nodes	
– Want	to	modularize	each	operaFon	(type	check,	
opFmize,	code	gen)	so	its	parts	are	together	

– Want	to	avoid	having	to	change	node	classes	
when	we	modify	or	add	an	operaFon	on	the	tree	

UW CSE 401 Winter 2017 H-9

Two	Views	of	Modularity	

UW CSE 401 Winter 2017 H-10

Type check

O
ptim

ize

G
enerate x86

Flatten

Print

IDENT X X X X X

exp X X X X X

while X X X X X

if X X X X X

Binop X X X X X

…

draw

m
ove

iconify

highlight

transm
ogrify

circle X X X X X

text X X X X X

canvas X X X X X

scroll X X X X X

dialog X X X X X

…

Visitor	Pa>ern	
•  Idea:	Package	each	operaFon	(opFmizaFon,	
print,	code	gen,	…)	in	a	separate	visitor	class	

•  Create	exactly	one	instance	of	each	visitor	class	
(singleton	pa>ern)	
–  SomeFmes	called	a	“funcFon	object”	
–  Contains	all	of	the	methods	for	that	parFcular	
operaFon,	one	for	each	kind	of	AST	node	

•  Include	a	generic	“accept	visitor”	method	in	
every	node	class	

•  To	perform	an	operaFon,	pass	the	appropriate	
“visitor	object”	around	the	AST	during	a	traversal	

UW CSE 401 Winter 2017 H-11

Avoiding	instanceof	

•  We’d	like	to	avoid	huge	if-elseif	nests	in	the	
visitor	to	discover	the	node	types	

void	checkTypes(ASTNode	p)	{	
	if	(p	instanceof	WhileNode)	{	…	}	
	else	if	(p	instanceof	IfNode)	{	…	}	
	else	if	(p	instanceof	BinExp)	{	…	}		

…		
}	

UW CSE 401 Winter 2017 H-12

Visitor	Double	Dispatch	
•  Include	a	“visit”	method	for	every	AST	node	type	
in	each	Visitor	

void	visit(WhileNode);	
void	visit(ExpNode);		
etc.	

•  Include	an	accept(Visitor	v)	method	in	each	AST	
node	class	

•  When	Visitor	v	is	passed	to	an	AST	node,	the	
node’s	accept	method	calls	v.visit(this)	
–  Selects	correct	Visitor	method	for	this	node	
–  “Double	dispatch”	

UW CSE 401 Winter 2017 H-13

Visitor	Interface	
interface	Visitor	{	

	//	overload	visit	for	each	AST	node	type	
	public	void	visit(WhileNode	s);	
	public	void	visit(IfNode	s);	
	public	void	visit(BinExp	e);	
	…	

}	
–  Every	separate	Visitor	implements	this	interface	
– Aside:	The	result	type	can	be	whatever	is	convenient,	
doesn’t	have	to	be	void,	although	that	is	common	

UW CSE 401 Winter 2017 H-14

Accept	Method	in	Each	AST	Node	Class	

•  Every	AST	class	overrides	accept(Visitor)	
•  Example		

	public	class	WhileNode	extends	StmtNode	{	
	 				…	
	 			//	accept	a	visit	from	a	Visitor	object	v	
	 			public	void	accept(Visitor	v)	{	
	 						v.visit(this);			//	dynamic	dispatch	on	“this”	(WhileNode)	
	 			}	
	 			…	
	}	

•  Key	points	
–  Visitor	object	passed	as	a	parameter	to	WhileNode	
–  WhileNode	calls	visit,	which	dispatches	to	visit(WhileNode)	

automaFcally	–	i.e.,	the	correct	method	for	this	kind	of	node	

UW CSE 401 Winter 2017 H-15

Composite	Objects	(1)	

•  How	do	we	handle	composite	objects?	
•  One		possibility:	the	accept	method	passes	the	visitor	
down	to	subtrees	before	(or	aker)	visiFng	itself	

public	class	WhileNode	extends	StmtNode	{	
		Expr	exp;	Stmt	stmt;			//	children	
		…	
		//	accept	a	visit	from	visitor	v	
		public	void	accept	(Visitor	v)	{	
					this.exp.accept(v);	
					this.stmt.accept(v);	
					v.visit(this);	
	}	

UW CSE 401 Winter 2017 H-16

Composite	Objects	(2)	

•  Another	possibility:	the	visitor	can	control	the	
traversal	

	public	void	visit(WhileNode	p)	{	
	 	p.expr.accept(this);	
	 	p.stmt.accept(this);	
	}	

UW CSE 401 Winter 2017 H-17

EncapsulaFon	

•  A	visitor	object	oken	needs	to	be	able	to	
access	state	in	the	AST	nodes	
∴ May	need	to	expose	more	node	state	than	we	
might	do	to	otherwise	
•  i.e.,	lots	of	public	fields	in	node	objects	

– Overall	a	good	tradeoff	–	be>er	modularity	
(plus,	the	nodes	are	relaFvely	simple	data	objects	
anyway	–	not	hiding	much	of	anything)	

UW CSE 401 Winter 2017 H-18

Visitor	AcFons	and	State	
•  A	visitor	funcFon	has	a	reference	to	the	node	it	is	
visiFng	(the	parameter)	
∴ can	access	and	manipulate	subtrees	directly	

•  Visitor	object	can	also	include	local	data	(state)	
shared	by	methods	in	the	visitor	
–  This	data	is	effecFvely	“global”	to	the	methods	that	make	
up	the	visitor	object,	and	can	be	used	to	store	and	pass	
around	informaFon	

	
public	class	TypeCheckVisitor	extends	NodeVisitor	{	

	public	void	visit(WhileNode	s)	{	…	}	
	public	void	visit(IfNode	s)	{	…	}	
	…	
	private	<local	state>;		//	all	methods	can	read/write	this	

}	

UW CSE 401 Winter 2017 H-19

So	which	to	choose?	
•  PossibiliFes:	
–  Node	objects	drive	the	traversal	and	pass	the	visitors	
around	the	tree	in	standard	ways	

–  Visitor	object	drives	the	traversal	(the	visitor	has	access	to	
the	node,	including	references	to	child	subtrees)	

•  In	a	compiler:	
–  First	choice	handles	many	common	cases	
–  Big	compilers	oken	have	mulFple	visitor	schemes	(e.g.,	
several	different	traversals	defined	in	Node	interface	+	
custom	traversals	in	some	visitors)	

–  For	MiniJava:	keep	it	simple	and	start	with	supplied	
examples,	but	if	you	really	need	to	do	something	different,	
you	can	
•  (i.e.,	keep	an	open	mind,	but	not	so	open	that	you	create	needless	
complexity)	

UW CSE 401 Winter 2017 H-20

Why	is	it	so	complicated?	

•  What	we’re	really	trying	to	do:	2-argument	
dynamic	dispatch	
– Pick	correct	method	to	execute	based	on	dynamic	
types	of	both	the	node	and	the	visitor	

•  But	Java	and	most	O-O	languages	only	support	
single	dispatch	
– So	we	use	it	twice	to	get	the	effect	we	want	

UW CSE 401 Winter 2017 H-21

References	

•  For	Visitor	pa>ern	(and	many	others)	
– Design	Pa*erns:	Elements	of	Reusable	Object-
Oriented	So<ware,	Gamma,	Helm,	Johnson,	and	
Vlissides,	Addison-Wesley,	1995	(the	classic,	
examples	are	in	old	C++	and	Smalltalk)	

– Object-Oriented	Design	&	Pa*erns,	Horstmann,		
A-W,	2nd	ed,	2006	(uses	Java)	

•  Specific	informaFon	for	MiniJava	AST	and	
visitors	in	Appel	textbook	&	online	

UW CSE 401 Winter 2017 H-22

Coming	A>racFons	
•  StaFc	Analysis	
–  Type	checking	&	representaFon	of	types	
–  Non-context-free	rules	(variables	and	types	must	be	
declared,	etc.)	

•  Symbol	Tables	
•  &	more	

•  But	first,	we	should	finish	parsing	–	LL(1)	&	recursive	
descent	

•  Later,	more	about	compiler	IRs	when	we	get	to	
opFmizaFons	

UW CSE 401 Winter 2017 H-23

