
CSE	401	–	Compilers	

Intermediate	Representa7ons	
Hal	Perkins	
Winter	2017	

UW CSE 401 Winter 2017 G-1 



Administrivia	

•  No	sec7ons	this	week	–	not	far	enough	along	with	
newer	material,	so	extra	7me	for	project	
–  TAs	will	be	in	006	lab	during	sec7on	7mes	
–  Reminder:	gdb	can	be	useful	for	debugging	compiled	code	

•  Parsers	back	later	than	we	wanted;	will	avoid	
penalizing	errors	twice	on	seman7cs	grading	
–  Let	us	know	if	we	miss	something	

•  Extra	wriQen	hw	before	final	exams	covering	
op7miza7on,	back-end?	
–  Or	are	review	ques7ons	on	old	exams	+	sec7on	problems	
enough?	

UW CSE 401 Winter 2017 G-2 



Agenda	

•  Survey	of	Intermediate	Representa7ons	
– Graphical	

•  Concrete/Abstract	Syntax	Trees	(ASTs)	
•  Control	Flow	Graph	
•  Dependence	Graph	

– Linear	Representa7ons	
•  Stack	Based	
•  3-Address	

•  Several	of	these	will	show	up	as	we	explore	
program	analysis	and	op7miza7on	

UW CSE 401 Winter 2017 G-3 



Compiler	Structure	(review)	

UW CSE 401 Winter 2017 G-4 

Source Target 

Scanner 

Parser Middle 
(optimization) 

Code Gen 

characters 

tokens 

IR 

IR (often different) 

Assembly or binary code 

Semantic 
Analysis (maybe 

different) 

IR 



Intermediate	Representa7ons	

•  In	most	compilers,	the	parser	builds	an	
intermediate	representa7on	of	the	program	
–  Typically	an	AST,	as	in	the	MiniJava	project	

•  Rest	of	the	compiler	transforms	the	IR	to	improve	
(“op7mize”)	it	and	eventually	translate	to	final	
code	
–  Typically	will	transform	ini7al	IR	to	one	or	more	
different	IRs	along	the	way	

•  Some	high-level	examples	now;	more	specifics	
later	as	needed	

UW CSE 401 Winter 2017 G-5 



IR	Design	

•  Decisions	affect	speed	and	efficiency	of	the	
rest	of	the	compiler	
– General	rule:	compile	7me	is	important,	but	
performance	of	generated	code	ogen	more	
important	

– Typical	case	for	produc7on	code:	compile	a	few	
7mes,	run	many	7mes	
•  Although	the	reverse	is	true	during	development	

– So	make	choices	that	improve	compile	7me	as	
long	as	they	don’t	compromise	the	result	

UW CSE 401 Winter 2017 G-6 



IR	Design	

•  Desirable	proper7es	
–  Easy	to	generate	
–  Easy	to	manipulate	
–  Expressive	
– Appropriate	level	of	abstrac7on	

•  Different	tradeoffs	depending	on	compiler	goals	
•  Different	tradeoffs	in	different	parts	of	the	same	
compiler	
–  So	ogen	different	IRs	in	different	parts	

UW CSE 401 Winter 2017 G-7 



IR	Design	Taxonomy	

•  Structure	
– Graphical	(trees,	graphs,	etc.)	
– Linear	(code	for	some	abstract	machine)	
– Hybrids	are	common	(e.g.,	control-flow	graphs	
whose	nodes	are	basic	blocks	of	linear	code)	

•  Abstrac7on	Level	
– High-level,	near	to	source	language	
– Low-level,	closer	to	machine	(exposes	more	
details	to	compiler)	

UW CSE 401 Winter 2017 G-8 



Examples:	Array	Reference	

	A[i,j]	
	
	
	
	
	
or	

	t1	←	A[i,j]	

loadI			1			=>	r1	
sub		rj,r1		=>	r2	
loadI		10		=>	r3	
mult	r2,r3	=>	r4	
sub		ri,r1		=>	r5	
add		r4,r5	=>	r6	
loadI	@A		=>	r7	
add		r7,r6	=>	r8	
load	r8					=>	r9	

UW CSE 401 Winter 2017 G-9 

subscript 

A i j 



Levels	of	Abstrac7on	

•  Key	design	decision:	how	much	detail	to	expose	
– Affects	possibility	and	profitability	of	various	
op7miza7ons	
•  Depends	on	compiler	phase:	some	seman7c	analysis	&	
op7miza7ons	are	easier	with	high-level	IRs	close	to	the	
source	code.		Low-level	usually	preferred	for	other	
op7miza7ons,	register	alloca7on,	code	genera7on,	etc.	

–  Structural	(graphical)	IRs	are	typically	fairly	high-level	
–	but	are	also	used	for	low-level	

–  Linear	IRs	are	typically	low-level	
–  But	these	generaliza7ons	don’t	always	hold	

UW CSE 401 Winter 2017 G-10 



Graphical	IRs	
•  IRs	represented	as	a	graph	(or	tree)	
•  Nodes	and	edges	typically	reflect	some	structure	
of	the	program	
–  E.g.,	source	code,	control	flow,	data	dependence	

•  May	be	large	(especially	syntax	trees)	
•  High-level	examples:	syntax	trees,	DAGs	
– Generally	used	in	early	phases	of	compilers	

•  Other	examples:	control	flow	graphs	and	data	
dependency	graphs	
– Ogen	used	in	op7miza7on	and	code	genera7on	

UW CSE 401 Winter 2017 G-11 



Concrete	Syntax	Trees	

•  The	full	grammar	is	needed	to	guide	the	
parser,	but	contains	many	extraneous	details	
– Chain	produc7ons	
– Rules	that	control	precedence	and	associa7vity	

•  Typically	the	full	syntax	tree	does	not	need	to	
be	used	explicitly	

UW CSE 401 Winter 2017 G-12 



Abstract	Syntax	Trees	

•  Want	only	essen7al	structural	informa7on	
– Omit	extra	junk	

•  Can	be	represented	explicitly	as	a	tree	or	in	a	
linear	form	
– Example:	LISP/Scheme/Racket	S-expressions	are	
essen7ally	ASTs	

•  Common	output	from	parser;	used	for	sta7c	
seman7cs	(type	checking,	etc.)	and	some7mes	
high-level	op7miza7ons	

UW CSE 401 Winter 2017 G-13 



DAGs	(Directed	Acyclic	Graphs)	

•  Varia7on	on	ASTs	with	shared	substructures	
•  Pro:	saves	space,	exposes	redundant	sub-
expressions	

•  Con:	less	flexibility	if	part	needs	to	be	changed	

UW CSE 401 Winter 2017 G-14 

+	
*	

*	

a	 2	
b	



Basic	Blocks	

•  Fundamental	concept	in	analysis/op7miza7on	
•  A	basic	block	is:	
– A	sequence	of	code	
– One	entry,	one	exit	
– Always	executes	as	a	single	unit	(“straightline	
code”)	–	so	it	can	be	treated	as	an	indivisible	block	

•  Usually	represented	as	some	sort	of	a	list	
although	Trees/DAGs	are	possible	

UW CSE 401 Winter 2017 G-15 



Control	Flow	Graph	(CFG)	

•  Nodes:	basic	blocks		
•  Edges:	represent	possible	flow	of	control	from	
one	block	to	another,	i.e.,	possible	execu7on	
orderings	
– Edge	from	A	to	B	if	B	could	execute	immediately	
ager	A	in	some	possible	execu7on	

•  Required	for	much	of	the	analysis	done	during	
op7miza7on	phases	

UW CSE 401 Winter 2017 G-16 



CFG	Example	
print(“hello”);	
a=7;	
if	(x	==	y)	{	
		print(“same”);	
		b	=	9;	
}	else	{	
		b	=	10;	
}	
while	(a	<	b)	{	
		a++;	
		print(“bump”);	
}	
print(“finis”);	

UW CSE 401 Winter 2017 G-17 

print(“hello”);	
a	=	7;	
if	(x	==	y);	

print(“same”);	
b	=	9;	 b	=	10;	

while	(a	<	b)	

a++;	
print(“bump”);	

print(“finis”);	



Dependency	Graphs	
•  Ogen	used	in	conjunc7on	with	another	IR	
•  Data	dependency:	edges	between	nodes	that	
reference	common	data	

•  Examples	
–  Block	A	defines	x	then	B	reads	it	(RAW	–	read	ager	
write)	

–  Block	A	reads	x	then	B	writes	it	(WAR	–	“an7-
dependence)	

–  Blocks	A	and	B	both	write	x	(WAW)	–	order	of	blocks	
must	reflect	original	program	seman7cs	

•  These	restrict	reorderings	the	compiler	can	do	

UW CSE 401 Winter 2017 G-18 



Linear	IRs	

•  Pseudo-code	for	some	abstract	machine	
•  Level	of	abstrac7on	varies	
•  Simple,	compact	data	structures	
–  Commonly	used:	arrays,	linked	structures	

•  Examples:	3-address	code,	stack	machine	code	

UW CSE 401 Winter 2017 G-19 

t1	←	2	
t2	←	b	
t3	←	t1	*	t2	
t4	←	a	
t5	←	t4	–	t3	

push	2	
push	b	
mul7ply	
push	a	
subtract	

•  Fairly	compact	
•  Compiler	can	

control	reuse	of	
names	–	clever	
choice	can	reveal	
op7miza7ons	

•  ILOC	&	similar	code	

•  Each	instruc7on	
consumes	top	of	stack	
&	pushes	result	

•  Very	compact	
•  Easy	to	create	and	

interpret	
•  Java	bytecode,	MSIL	



Abstrac7on	Levels	in	Linear	IR	

•  Linear	IRs	can	also	be	close	to	the	source	
language,	very	low-level,	or	somewhere	in	
between.	

•  Example:	Linear	IRs	for	C	array	reference		
a[i][j+2]	

– High-level:		t1	←	a[i,j+2]	

UW CSE 401 Winter 2017 G-20 



IRs	for	a[i][j+2],	cont.	

•  Medium-level	
t1	←	j	+	2	
t2	←	i	*	20	
t3	←	t1	+	t2	
t4	←	4	*	t3	
t5	←	addr	a	
t6	←	t5	+	t4	
t7	←	*t6	

•  Low-level	
r1	←	[fp-4]	
r2	←		r1	+	2	
r3	←	[fp-8]	
r4	←	r3	*	20	
r5	←	r4	+	r2	
r6	←	4	*	r5	
r7	←	fp	–	216	
f1	←	[r7+r6]	

UW CSE 401 Winter 2017 G-21 



Abstrac7on	Level	Tradeoffs	
•  High-level:	good	for	some	high-level	
op7miza7ons,	seman7c	checking;	but	can’t	
op7mize	things	that	are	hidden	–	like	address	
arithme7c	for	array	subscrip7ng	

•  Low-level:	need	for	good	code	genera7on	and	
resource	u7liza7on	in	back	end	but	loses	some	
seman7c	knowledge	(e.g.,	variables,	data	
aggregates,	source	rela7onships)	

•  Medium-level:	more	detail	but	keeps	more	
higher-level	seman7c	informa7on	

•  Many	compilers	use	all	3	in	different	phases	

UW CSE 401 Winter 2017 G-22 



Hybrid	IRs	

•  Combina7on	of	structural	and	linear	
•  Level	of	abstrac7on	varies	
•  Control-flow	graph	is	ogen	an	example	of	this	
– Basic	IR	is	a	graph	
– Nodes	in	the	graph	can	be	linear	lists	of	IR	
instruc7ons	

UW CSE 401 Winter 2017 G-23 



What	IR	to	Use?	

•  Common	choice:	all(!)	
– AST	or	other	structural	representa7on	built	by	parser	
and	used	in	early	stages	of	the	compiler	
•  Closer	to	source	code	
•  Good	for	seman7c	analysis	
•  Facilitates	some	higher-level	op7miza7ons	

– Hybrid	IR	for	op7miza7on	phases	
–  Transform	to	low-level	IR	for	later	stages	of	compiler	

•  Closer	to	machine	code	
•  Exposes	machine-related	op7miza7ons		
•  Use	to	build	control-flow	graph	

UW CSE 401 Winter 2017 G-24 



Coming	AQrac7ons	

•  Survey	of	compiler	“op7miza7ons”	
– Analysis	and	transforma7ons	(including	SSA)	

•  Back-end	organiza7on	in	produc7on	compilers	
–  Instruc7on	selec7on	and	scheduling,	register	
alloca7on	

•  Other	topics	depending	on	7me	
– Dynamic	languages?	JVM?	Memory	management	
(garbage	collec7on)?		Any	preferences?	

UW CSE 401 Winter 2017 G-25 


