
CSE	401	–	Compilers	

LL	and	Recursive-Descent	Parsing	
Hal	Perkins	
Winter	2017	

UW CSE 401 Winter 2017 F-1

Agenda	

•  Top-Down	Parsing	
•  PredicFve	Parsers	
•  LL(k)	Grammars	
•  Recursive	Descent	
•  Grammar	Hacking	
– LeJ	recursion	removal	
– LeJ	factoring	

UW CSE 401 Winter 2017 F-2

Basic	Parsing	Strategies	(1)	

•  BoMom-up	
– Build	up	tree	from	leaves	

•  ShiJ	next	input	or	reduce	a	handle	
•  Accept	when	all	input	read	and	reduced	to	start	symbol	
of	the	grammar	

– LR(k)	and	subsets	(SLR(k),	LALR(k),	…)	

UW CSE 401 Winter 2017 F-3

remaining input

Basic	Parsing	Strategies	(2)	

•  Top-Down	
–  Begin	at	root	with	start	symbol	of	grammar	
–  Repeatedly	pick	a	non-terminal	and	expand	
–  Success	when	expanded	tree	matches	input	
–  LL(k)	

UW CSE 401 Winter 2017 F-4

A

Top-Down	Parsing	
•  SituaFon:	have	completed	part	of	a	leJ-most	derivaFon	

	S	=>*	wAα	=>*	wxy	

•  Basic	Step:	Pick	some	producFon	
	A	::=	β1	β2	…	βn		

	that	will	properly	expand	A	
to	match	the	input	
–  Want	this	to	be		

determinisFc	

UW CSE 401 Winter 2017 F-5

A

PredicFve	Parsing	
•  If	we	are	located	at	some	non-terminal	A,	and	there	
are	two	or	more	possible	producFons	

	A	::=	α	
	A	::=	β	

	we	want	to	make	the	correct	choice	by	looking	at	
just	the	next	input	symbol	

•  If	we	can	do	this,	we	can	build	a	predic+ve	parser		
that	can	perform	a	top-down	parse	without	
backtracking	

UW CSE 401 Winter 2017 F-6

Example	

•  Programming	language	grammars	are	oJen	suitable	
for	predicFve	parsing	

•  Typical	example	
	stmt	::=	id	=	exp	;	|	return	exp	;		
										|	if	(exp)	stmt		|	while	(exp)	stmt		

		
	If	the	next	part	of	the	input	begins	with	the	tokens	
	 	 	IF		LPAREN		ID(x)	…	
	we	should	expand	stmt		to	an	if-statement		

UW CSE 401 Winter 2017 F-7

LL(1)	Property	

•  A	grammar	has	the	LL(1)	property	if,	for	all	
non-terminals	A,	if	producFons	A	::=	α	and	
A	::=	β	both	appear	in	the	grammar,	then	it	is	
true	that	
	FIRST(α)		∩		FIRST(β)	=	Ø		

•  If	a	grammar	has	the	LL(1)	property,	we	can	
build	a	predicFve	parser	for	it	that	uses	
1	symbol	lookahead	

UW CSE 401 Winter 2017 F-8

LL(k)	Parsers	

•  An	LL(k)	parser	
– Scans	the	input	LeJ	to	right	
– Constructs	a	LeJmost	derivaFon	
– Looking	ahead	at	most	k	symbols	

•  1-symbol	lookahead	is	enough	for	many	
pracFcal	programming	language	grammars	
– LL(k)	for	k>1	is	rare	in	pracFce	

•  and	even	if	the	grammar	isn’t	quite	LL(1),	it	may	be	
close	enough	that	we	can	pretend	it	is	LL(1)	and	cheat	a	
liMle	when	it	isn’t	

UW CSE 401 Winter 2017 F-9

Table-Driven	LL(k)	Parsers	

•  As	with	LR(k),	a	table-driven	parser	can	be	
constructed	from	the	grammar	

•  Example	
	1.		S	::=	(S)	S	
	2.		S	::=	[S]	S	
	3.		S	::=	ε	

•  Table	

UW CSE 401 Winter 2017 F-10

() [] $

S 1 3 2 3 3

LL	vs	LR	(1)	

•  Table-driven	parsers	for	both	LL	and	LR	can	be	
automaFcally	generated	by	tools	

•  LL(1)	has	to	make	a	decision	based	on	a	single	
non-terminal	and	the	next	input	symbol	

•  LR(1)	can	base	the	decision	on	the	enFre	leJ	
context	(i.e.,	contents	of	the	stack)	as	well	as	
the	next	input	symbol	

UW CSE 401 Winter 2017 F-11

LL	vs	LR	(2)	

∴	LR(1)	is	more	powerful	than	LL(1)	
–  Includes	a	larger	set	of	languages	

∴	(editorial	opinion)	If	you’re	going	to	use	a	
tool-generated	parser,	might	as	well	use	LR	
– But	there	are	some	very	good	LL	parser	tools	out	
there	(ANTLR,	JavaCC,	…)	that	might	win	for	other	
reasons	

UW CSE 401 Winter 2017 F-12

Recursive-Descent	Parsers	

•  One	advantage	of	top-down	parsing	is	that	it	is	
easy	to	implement	by	hand	
– And	even	if	you	use	automaFc	tools,	the	code	may	
be	easier	to	follow	and	debug	

•  Key	idea:	write	a	funcFon	(method,	procedure)	
corresponding	to	each	non-terminal	in	the	
grammar	
– Each	of	these	funcFons	is	responsible	for	matching	
its	non-terminal	with	the	next	part	of	the	input	

UW CSE 401 Winter 2017 F-13

Example:	Statements	

Grammar	
stmt	::=	id	=	exp	;	

					|	return	exp	;	
					|	if	(exp)	stmt	
					|	while	(exp)	stmt		

Method	for	this	grammar	rule	
//	parse	stmt	::=	id=exp;	|	…	
void	stmt()	{	
		switch(nextToken)	{	

	RETURN:	returnStmt();	break;	
	IF:		ifStmt();	break;	
	WHILE:	whileStmt();	break;	
	ID:	assignStmt();	break;	

		}	
}	

UW CSE 401 Winter 2017 F-14

Example	(more	statements)	
//	parse	while	(exp)	stmt	
void	whileStmt()	{	

	//	skip	“while”	“(”	
	getNextToken();	
	getNextToken();	

	
	//	parse	condiFon	
	exp();	

	
	//	skip	“)”	
	getNextToken();	

	
	//	parse	stmt	
	stmt();	

}	

//	parse	return	exp	;	
void	returnStmt()	{	

	//	skip	“return”	
	getNextToken();	

	
	//	parse	expression	
	exp();	

	
	//	skip	“;”	
	getNextToken();	

}	
	

UW CSE 401 Winter 2017 F-15

Invariant	for	Parser	FuncFons	

•  The	parser	funcFons	need	to	agree	on	where	they	
are	in	the	input	

•  Useful	invariant:	When	a	parser	funcFon	is	called,	
the	current	token	(next	unprocessed	piece	of	the	
input)	is	the	token	that	begins	the	expanded	non-
terminal	being	parsed	
–  Corollary:	when	a	parser	funcFon	is	done,	it	must	have	
completely	consumed	input	correspond	to	that	non-
terminal	

UW CSE 401 Winter 2017 F-16

Possible	Problems	

•  Two	common	problems	for	recursive-descent	
(and	LL(1))	parsers	
– LeJ	recursion	(e.g.,	E	::=	E		+	T		|	…)	
– Common	prefixes	on	the	right	side	of	producFons	

UW CSE 401 Winter 2017 F-17

LeJ	Recursion	Problem	
Grammar	rule	
expr	::=	expr		+	term	
	 					|	term	

	

And	the	bug	is????	

Code	
//	parse	expr	::=	…	
void	expr()	{	
	expr();	
	if	(current	token	is	
																							PLUS)	{	
	 	getNextToken();	
	 	term();	
	}	

}	

UW CSE 401 Winter 2017 F-18

LeJ	Recursion	Problem	

•  If	we	code	up	a	leJ-recursive	rule	as-is,	we	get	
an	infinite	recursion	

•  Non-soluFon:	replace	with	a	right-recursive	
rule	
	 				expr	::=	term	+	expr		|		term	

– Why	isn’t	this	the	right	thing	to	do?	

UW CSE 401 Winter 2017 F-19

Formal	LeJ	Recursion	SoluFon	

•  Rewrite	using	right	recursion	and	a	new	non-
terminal	

•  Original:		expr	::=	expr	+	term		|		term	
•  New:	

	expr	::=	term	exprtail	
	exprtail	::=	+	term	exprtail		|		ε	

•  ProperFes	
–  No	infinite	recursion	if	coded	up	directly	
– Maintains	required	leJ	associaFvely	(if	you	handle	things	
correctly	in	the	semanFc	acFons)	

UW CSE 401 Winter 2017 F-20

Another	Way	to	Look	at	This	

•  Observe	that	
	expr	::=	expr	+	term	|	term	

	generates	the	sequence	
	(…((term	+	term)	+	term)	+	…)	+	term	

•  We	can	sugar	the	original	rule	to	reflect	this	
	expr	::=	term	{	+	term	}*	

•  This	leads	directly	to	recursive-descent	parser	
code	
–  Just	be	sure	to	do	the	correct	thing	to	handle	
associaFvity	as	the	terms	are	parsed	

UW CSE 401 Winter 2017 F-21

Code	for	Expressions	(1)	

//	parse	
//				expr	::=		term	{	+	term	}*	
void	expr()	{	

	term();	
	while	(next	symbol	is	PLUS)	{	
	 	getNextToken();	

	 	 	term();	
	}	

}	

//	parse	
// 				term	::=	factor	{	*	factor	}*	
void	term()	{	

	factor();	
	while	(next	symbol	is		TIMES)	{	
	 	getNextToken();	

	 	 	factor();	
	}	

}	
	

UW CSE 401 Winter 2017 F-22

Code	for	Expressions	(2)	

//	parse		
//				factor	::=	int	|	id	|	(expr)	
void	factor()	{	
			
		switch(nextToken)	{	
	

	case	INT:	
	 	process	int	constant;	
	 	getNextToken();	
	 	break; 		
	…	

	
	case	ID:	
	 	process	idenFfier;	
	 	getNextToken();	
	 	break;	
	case	LPAREN:	
	 	getNextToken();	
	 	expr();	
	 	getNextToken();	
	}	

} 		

UW CSE 401 Winter 2017 F-23

What	About	Indirect	LeJ	Recursion?	

•  A	grammar	might	have	a	derivaFon	that	leads	
to	a	leJ	recursion	
	A	=>	β1	=>*	βn	=>	A	γ	

•  SoluFon:	transform	the	grammar	to	one	
where	all	producFons	are	either	

	A	::=	aα	 	 	–	i.e.,	starts	with	a	terminal	symbol,	or	
	A	::=	Aα 	 	–	i.e.,	direct	leJ	recursion	

then	use	formal	leJ-recursion	removal	to	
eliminate	all	direct	leJ	recursions	

UW CSE 401 Winter 2017 F-24

EliminaFng	Indirect	LeJ	Recursion	

•  Basic	idea:	Rewrite	all	producFons	A	::=	B…	where	
A	and	B	are	different	non-terminals	by	using	all	
B	::=	…	producFons	to	replace	the	iniFal	rhs	B	

•  Example:		Suppose	we	have	A	::=	Bδ,	B	::=	α,	and	
B	::=	β.		Replace	A	::=	Bδ	with	A	::=	αδ	and	A	::=	βδ.		

•  Need	to	pick	an	order	to	process	the	non-
terminals	to	avoid	re-introducing	indirect	leJ	
recursions.		Not	complicated,	just	be	systemaFc.	
– Details	in	any	compiler	or	formal-language	textbook	

UW CSE 401 Winter 2017 F-25

Second	Problem:	LeJ	Factoring	

•  If	two	rules	for	a	non-terminal	have	right	hand	
sides	that	begin	with	the	same	symbol,	we	
can’t	predict	which	one	to	use	

•  SoluFon:	Factor	the	common	prefix	into	a	
separate	producFon	

UW CSE 401 Winter 2017 F-26

LeJ	Factoring	Example	

•  Original	grammar	
	ifStmt	::=	if	(expr)	stmt	
	 	 							|	if	(expr)	stmt		else	stmt	

•  Factored	grammar	
	ifStmt	::=	if	(expr)	stmt		ifTail	
	ifTail		::=	else	stmt		|	ε		

UW CSE 401 Winter 2017 F-27

Parsing	if	Statements	

•  But	it’s	easiest	to	just	
code	up	the	“else	
matches	closest	if”	rule	
directly	

•  (If	you	squint	properly	
this	is	really	just	leJ	
factoring	with	the	two	
producFons	handled	by	
a	single	rouFne)	

//	parse		
//					if	(expr)	stmt	[else	stmt]	
void	ifStmt()	{	

	getNextToken();	
	getNextToken();	
	expr();	
	getNextToken();	
	stmt();	
	if	(next	symbol	is	ELSE)	{	
	 	getNextToken();	
	 	stmt();	
	}	

}	

UW CSE 401 Winter 2017 F-28

Another	Lookahead	Problem	

•  In	languages	like	FORTRAN,	parentheses	are	used	for	
array	subscripts	

•  A	FORTRAN	grammar	includes	something	like	
	factor	::=	id	(subscripts)	|	id	(arguments)	|	…		

•  When	the	parser	sees	“id	(”,	how	can	it	decide	
whether	this	begins	an	array	element	reference	or	a	
funcFon	call?			

UW CSE 401 Winter 2017 F-29

Two	Ways	to	Handle	id	(?)	

•  Use	the	type	of	id		to	decide	
– Requires	declare-before-use	restricFon	if	we	want	
to	parse	in	1	pass;	also	means	parser	needs	
semanFc	informaFon,	not	just	grammar	

•  Use	a	covering	grammar	
	factor	::=	id	(commaSeparatedList)	|	…	

	and	fix/check	later	when	more	informaFon	is	
available	(e.g.,	types)	

UW CSE 401 Winter 2017 F-30

Top-Down	Parsing	Concluded	

•  Works	with	a	smaller	set	of	grammars	than	
boMom-up,	but	can	be	done	for	most	sensible	
programming	language	constructs	
–  Possibly	with	some	grammar	refactoring	

•  If	you	need	to	write	a	quick-n-dirty	parser,	
recursive	descent	is	oJen	the	method	of	choice	
– And	some	sophisFcated	hand-wriMen	parsers	for	real	
languages	(e.g.,	C++)	are	“based	on”	LL	parsing,	but	
with	lots	of	customizaFons	

UW CSE 401 Winter 2017 F-31

Parsing	Concluded	

•  That’s	it!			
•  On	to	the	rest	of	the	compiler	
•  Coming	aMracFons	
–  Intermediate	representaFons	(ASTs	etc.)	
– SemanFc	analysis	(including	type	checking)	
– Symbol	tables	
– &	more…	

UW CSE 401 Winter 2017 F-32

