CSE 401 – Compilers

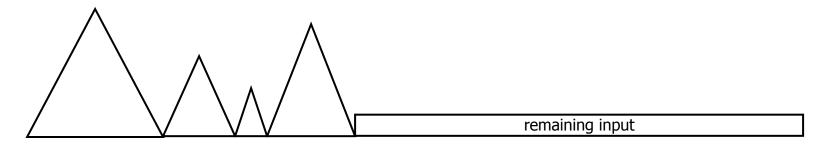
LL and Recursive-Descent Parsing
Hal Perkins
Winter 2017

Agenda

- Top-Down Parsing
- Predictive Parsers
- LL(k) Grammars
- Recursive Descent
- Grammar Hacking
 - Left recursion removal
 - Left factoring

Basic Parsing Strategies (1)

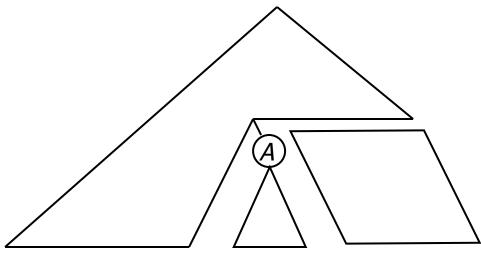
- Bottom-up
 - Build up tree from leaves
 - Shift next input or reduce a handle
 - Accept when all input read and reduced to start symbol of the grammar
 - LR(k) and subsets (SLR(k), LALR(k), ...)



Basic Parsing Strategies (2)

Top-Down

- Begin at root with start symbol of grammar
- Repeatedly pick a non-terminal and expand
- Success when expanded tree matches input
- -LL(k)



Top-Down Parsing

Situation: have completed part of a left-most derivation

$$S = * wA\alpha = * wxy$$

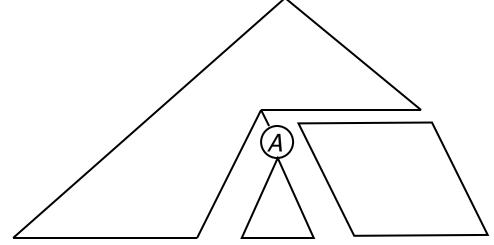
Basic Step: Pick some production

$$A ::= \beta_1 \beta_2 \dots \beta_n$$

that will properly expand A

to match the input

Want this to be deterministic



Predictive Parsing

• If we are located at some non-terminal A, and there are two or more possible productions

$$A ::= \alpha$$

$$A ::= \beta$$

we want to make the correct choice by looking at just the next input symbol

 If we can do this, we can build a predictive parser that can perform a top-down parse without backtracking

Example

- Programming language grammars are often suitable for predictive parsing
- Typical example

If the next part of the input begins with the tokens

```
IF LPAREN ID(x) ...
```

we should expand stmt to an if-statement

LL(1) Property

- A grammar has the LL(1) property if, for all non-terminals A, if productions $A := \alpha$ and $A := \beta$ both appear in the grammar, then it is true that FIRST(α) \cap FIRST(β) = \emptyset
- If a grammar has the LL(1) property, we can build a predictive parser for it that uses
 1 symbol lookahead

LL(k) Parsers

- An LL(k) parser
 - Scans the input Left to right
 - Constructs a Leftmost derivation
 - Looking ahead at most k symbols
- 1-symbol lookahead is enough for many practical programming language grammars
 - LL(k) for k>1 is rare in practice
 - and even if the grammar isn't quite LL(1), it may be close enough that we can pretend it is LL(1) and cheat a little when it isn't

Table-Driven LL(k) Parsers

- As with LR(k), a table-driven parser can be constructed from the grammar
- Example

1.
$$S := (S)S$$

3.
$$S := \varepsilon$$

Table

	()	[]	\$
S	1	3	2	3	3

LL vs LR (1)

- Table-driven parsers for both LL and LR can be automatically generated by tools
- LL(1) has to make a decision based on a single non-terminal and the next input symbol
- LR(1) can base the decision on the entire left context (i.e., contents of the stack) as well as the next input symbol

LL vs LR (2)

- .: LR(1) is more powerful than LL(1)
 - Includes a larger set of languages
- ∴ (editorial opinion) If you're going to use a tool-generated parser, might as well use LR
 - But there are some very good LL parser tools out there (ANTLR, JavaCC, ...) that might win for other reasons

Recursive-Descent Parsers

- One advantage of top-down parsing is that it is easy to implement by hand
 - And even if you use automatic tools, the code may be easier to follow and debug
- Key idea: write a function (method, procedure) corresponding to each non-terminal in the grammar
 - Each of these functions is responsible for matching its non-terminal with the next part of the input

Example: Statements


```
Method for this grammar rule
// parse stmt ::= id=exp; | ...
void stmt() {
    switch(nextToken) {
        RETURN: returnStmt(); break;
        IF: ifStmt(); break;
        WHILE: whileStmt(); break;
        ID: assignStmt(); break;
    }
}
```

Example (more statements)

```
// parse while (exp) stmt
void whileStmt() {
    // skip "while" "("
    getNextToken();
    getNextToken();

    // parse condition
    exp();

    // skip ")"
    getNextToken();

    // parse stmt
    stmt();
}
```

```
// parse return exp;
void returnStmt() {
    // skip "return"
    getNextToken();

    // parse expression
    exp();

    // skip ";"
    getNextToken();
}
```

Invariant for Parser Functions

- The parser functions need to agree on where they are in the input
- Useful invariant: When a parser function is called, the current token (next unprocessed piece of the input) is the token that begins the expanded nonterminal being parsed
 - Corollary: when a parser function is done, it must have completely consumed input correspond to that nonterminal

Possible Problems

- Two common problems for recursive-descent (and LL(1)) parsers
 - Left recursion (e.g., $E := E + T \mid ...$)
 - Common prefixes on the right side of productions

Left Recursion Problem

Grammar rule expr ::= expr + term | term

And the bug is????

Left Recursion Problem

- If we code up a left-recursive rule as-is, we get an infinite recursion
- Non-solution: replace with a right-recursive rule

```
expr ::= term + expr | term
```

— Why isn't this the right thing to do?

Formal Left Recursion Solution

- Rewrite using right recursion and a new nonterminal
- Original: expr ::= expr + term | term
- New:

```
expr ::= term exprtail 
exprtail ::= + term exprtail | ε
```

- Properties
 - No infinite recursion if coded up directly
 - Maintains required left associatively (if you handle things correctly in the semantic actions)

Another Way to Look at This

Observe that

```
expr ::= expr + term | term
generates the sequence
(...((term + term) + term) + ...) + term
```

- We can sugar the original rule to reflect this expr ::= term { + term }*
- This leads directly to recursive-descent parser code
 - Just be sure to do the correct thing to handle associativity as the terms are parsed

Code for Expressions (1)

```
// parse
// expr ::= term { + term }*
void expr() {
    term();
    while (next symbol is PLUS) {
        getNextToken();
        term();
    }
}
```

```
// parse
// term ::= factor { * factor }*
void term() {
   factor();
   while (next symbol is TIMES) {
      getNextToken();
      factor();
   }
}
```

Code for Expressions (2)

```
// parse
// factor ::= int | id | ( expr )
                                         case ID:
void factor() {
                                          process identifier;
                                          getNextToken();
 switch(nextToken) {
                                          break;
                                         case LPAREN:
   case INT:
                                          getNextToken();
    process int constant;
    getNextToken();
                                          expr();
    break;
                                          getNextToken();
   • • •
```

What About Indirect Left Recursion?

 A grammar might have a derivation that leads to a left recursion

$$A \Rightarrow \beta_1 \Rightarrow \beta_n \Rightarrow A \gamma$$

 Solution: transform the grammar to one where all productions are either

A ::= $a\alpha$ – i.e., starts with a terminal symbol, or

A ::= $A\alpha$ – i.e., direct left recursion

then use formal left-recursion removal to eliminate all direct left recursions

Eliminating Indirect Left Recursion

- Basic idea: Rewrite all productions A ::= B... where
 A and B are different non-terminals by using all
 B ::= ... productions to replace the initial rhs B
- Example: Suppose we have A ::= $B\delta$, B ::= α , and B ::= β . Replace A ::= $B\delta$ with A ::= $B\delta$ and A ::= $B\delta$.
- Need to pick an order to process the nonterminals to avoid re-introducing indirect left recursions. Not complicated, just be systematic.
 - Details in any compiler or formal-language textbook

Second Problem: Left Factoring

- If two rules for a non-terminal have right hand sides that begin with the same symbol, we can't predict which one to use
- Solution: Factor the common prefix into a separate production

Left Factoring Example

Original grammar

```
ifStmt ::= if ( expr ) stmt
| if ( expr ) stmt else stmt
```

Factored grammar

```
ifStmt ::= if (expr ) stmt ifTail
ifTail ::= else stmt | ε
```

Parsing if Statements

- But it's easiest to just code up the "else matches closest if" rule directly
- (If you squint properly this is really just left factoring with the two productions handled by a single routine)

```
// parse
// if (expr) stmt [ else stmt ]
void ifStmt() {
    getNextToken();
    getNextToken();
    expr();
    getNextToken();
    stmt();
    if (next symbol is ELSE) {
        getNextToken();
        stmt();
        stmt();
    }
}
```

Another Lookahead Problem

- In languages like FORTRAN, parentheses are used for array subscripts
- A FORTRAN grammar includes something like factor ::= id (subscripts) | id (arguments) | ...
- When the parser sees "id (", how can it decide whether this begins an array element reference or a function call?

Two Ways to Handle id (?)

- Use the type of id to decide
 - Requires declare-before-use restriction if we want to parse in 1 pass; also means parser needs semantic information, not just grammar
- Use a covering grammar

```
factor ::= id ( commaSeparatedList ) | ...
```

and fix/check later when more information is available (e.g., types)

Top-Down Parsing Concluded

- Works with a smaller set of grammars than bottom-up, but can be done for most sensible programming language constructs
 - Possibly with some grammar refactoring
- If you need to write a quick-n-dirty parser,
 recursive descent is often the method of choice
 - And some sophisticated hand-written parsers for real languages (e.g., C++) are "based on" LL parsing, but with lots of customizations

Parsing Concluded

- That's it!
- On to the rest of the compiler
- Coming attractions
 - Intermediate representations (ASTs etc.)
 - Semantic analysis (including type checking)
 - Symbol tables
 - & more...