
CSE	401	–	Compilers	

Languages,	Automata,	Regular	Expressions	
&	Scanners	
Hal	Perkins	
Winter	2017	

UW CSE 401 Winter 2017 B-1

Administrivia	

•  Read:	textbook	ch.	1	and	sec.	2.1-2.4	
•  First	homework:	out	later	today	or	tomorrow,	
due	next	Thursday.		WriNen	problems	on	this	
weeks’	material.	

•  If	you	haven’t	already,	please:	
– Post	a	followup	on	the	discussion	board	
– Pick	a	project	partner	

• We’ll	post	a	catalyst	form	for	ONE	of	you	to	send	in	
partner	info	(+	1	point	for	both	of	you	if	done	right)	

UW CSE 401 Winter 2017 B-2

Agenda	

•  Quick	review	of	basic	concepts	of	formal	
grammars	

•  Regular	expressions	
•  Lexical	specificaZon	of	programming	languages	
•  Using	finite	automata	to	recognize	regular	
expressions	

•  Scanners	and	Tokens	
•  General	ideas	in	lecture,	then	examples,	details,	
and	compiler	applicaZons	in	secZons	

UW CSE 401 Winter 2017 B-3

Programming	Language	Specs	

•  Since	the	1960s,	the	syntax	of	every	significant	
programming	language	has	been	specified	by	
a	formal	grammar	
– First	done	in	1959	with	BNF	(Backus-Naur	Form),	
used	to	specify	ALGOL	60	syntax	

– Borrowed	from	the	linguisZcs	community	
(Chomsky)	

UW CSE 401 Winter 2017 B-4

Formal	Languages	&	Automata	Theory	
(a	review	in	one	slide)	
•  Alphabet:	a	finite	set	of	symbols	and	characters	
•  String:	a	finite,	possibly	empty	sequence	of	symbols	
from	an	alphabet	

•  Language:	a	set	of	strings	(possibly	empty	or	infinite)	
•  Finite	specificaZons	of	(possibly	infinite)	languages	
–  Automaton	–	a	recognizer;	a	machine	that	accepts	all	
strings	in	a	language	(and	rejects	all	other	strings)	

–  Grammar	–	a	generator;	a	system	for	producing	all	strings	
in	the	language	(and	no	other	strings)	

•  A	parZcular	language	may	be	specified	by	many	
different	grammars	and	automata	

•  A	grammar	or	automaton	specifies	only	one	language	

UW CSE 401 Winter 2017 B-5

Language	(Chomsky)	hierarchy:	
quick	reminder	
•  Regular	(Type-3)	languages	are	

specified	by	regular	expressions/
grammars	and	finite	automata	(FSAs)	
–  Specs	and	implementaZon	of	scanners	

•  Context-free	(Type-2)	languages	are	
specified	by	context-free	grammars	
and	pushdown	automata	(PDAs)	
–  Specs	and	implementaZon	of	parsers	

•  Context-sensiZve	(Type-1)	languages	…	
aren’t	too	important	(at	least	for	us)	

•  Recursively-enumerable	(Type-0)	
languages	are	specified	by	general	
grammars	and	Turing	machines	

Turing	

CSL	

CFL	

Regular	

UW CSE 401 Winter 2017 6

Example:	
Grammar	for	a	Tiny	Language	
program	::=	statement	|	program	statement	
statement	::=	assignStmt	|	ifStmt	
assignStmt	::=	id	=	expr	;	
ifStmt	::=	if	(expr)	statement	
expr	::=	id	|	int	|	expr	+	expr	
id	::=	a	|	b	|	c	|	i	|	j	|	k	|	n	|	x	|	y	|	z	
int	::=	0	|	1	|	2	|	3	|	4	|	5	|	6	|	7	|	8	|	9	

UW CSE 401 Winter 2017 B-7

Exercise:	Derive	a	
simple	program	

		a			=			1			;						if			(a			+			1)					b				=				2				;	
UW CSE 401 Winter 2017 B-8

program	::=	statement	|	program	statement	
statement	::=	assignStmt	|	ifStmt	
assignStmt	::=	id	=	expr	;	
ifStmt	::=	if	(expr)	statement	
expr	::=	id	|	int	|	expr	+	expr	
id	::=	a	|	b	|	c	|	i	|	j	|	k	|	n	|	x	|	y	|	z	
int	::=	0	|	1	|	2	|	3	|	4	|	5	|	6	|	7	|	8	|	9	

ProducZons	
•  The	rules	of	a	grammar	are	called	producZons	
•  Rules	contain:	

–  Nonterminal	symbols:	grammar	variables	(program,	statement,	id,	
etc.)	

–  Terminal	symbols:	concrete	syntax	that	appears	in	programs	(a,	b,	c,	
0,	1,	if,	=,	(,),	…	

•  Meaning	of		
						nonterminal	::=	<sequence	of	terminals	and	nonterminals>	

•  In	a	derivaZon,	an	instance	of	nonterminal	can	be	replaced	by	the	
sequence	of	terminals	and	nonterminals	on	the	right	of	the	producZon	

•  Ooen	there	are	several	producZons	for	a	nonterminal	–	can	
choose	any	in	different	parts	of	derivaZon	

UW CSE 401 Winter 2017 B-9

AlternaZve	NotaZons	

•  There	are	several	notaZons	for	producZons	in	
common	use;	all	mean	the	same	thing	
ifStmt	::=	if	(expr)	statement	
ifStmt	➞	if	(expr)	statement	
<ifStmt>	::=	if	(<expr>)	<statement>	

UW CSE 401 Winter 2017 B-10

Parsing	

•  Parsing:	reconstruct	the	derivaZon	(syntacZc	
structure)	of	a	program	

•  In	principle,	a	single	recognizer	could	work	
directly	from	a	concrete,	character-by-
character	grammar	

•  In	pracZce	this	is	never	done	

UW CSE 401 Winter 2017 B-11

Parsing	&	Scanning	

•  In	real	compilers	the	recognizer	is	split	into	two	
phases	
–  Scanner:	translate	input	characters	to	tokens	

•  Also,	report	lexical	errors	like	illegal	characters	and	illegal	symbols	

–  Parser:	read	token	stream	and	reconstruct	the	derivaZon	

UW CSE 401 Winter 2017 B-12

Scanner Parser source tokens

Why	Separate	the	Scanner	and	Parser?	

•  Simplicity	&	SeparaZon	of	Concerns	
– Scanner	hides	details	from	parser	(comments,	
whitespace,	input	files,	etc.)	

– Parser	is	easier	to	build;	has	simpler	input	stream	
(tokens)	and	simpler	interface	for	input	

•  Efficiency	
– Scanner	recognizes	regular	expressions	–	proper	
subset	of	context	free	grammars	
•  (But	sZll	ooen	consumes	a	surprising	amount	of	the	
compiler’s	total	execuZon	Zme)	

UW CSE 401 Winter 2017 B-13

But	…	

•  Not	always	possible	to	separate	cleanly	
•  Example:	C/C++/Java	type	vs	iden2fier		
–  Parser	would	like	to	know	which	names	are	types	and	
which	are	idenZfiers,	but…	

–  Scanner	doesn’t	know	how	things	are	declared	
•  So	we	hack	around	it	somehow…	
–  Either	use	simpler	grammar	and	disambiguate	later,	
or	communicate	between	scanner	&	parser	

–  Engineering	issue:	try	to	keep	interfaces	as	simple	&	
clean	as	possible	

UW CSE 401 Winter 2017 B-14

Typical	Tokens	in	Programming	
Languages	
•  Operators	&	PunctuaZon	

–  +	-	*	/	()	{	}	[]	;	:	::	<	<=	==	=	!=	!	…	
–  Each	of	these	is	a	disZnct	lexical	class	

•  Keywords	
–  if		while		for		goto		return		switch		void		…	
–  Each	of	these	is	also	a	disZnct	lexical	class	(not	a	string)	

•  IdenZfiers	
–  A	single	ID	lexical	class,	but	parameterized	by	actual	id	

•  Integer	constants	
–  A	single	INT	lexical	class,	but	parameterized	by	int	value	

•  Other	constants,	etc.	

UW CSE 401 Winter 2017 B-15

Principle	of	Longest	Match	

•  In	most	languages,	the	scanner	should	pick	the	
longest	possible	string	to	make	up	the	next	token	if	
there	is	a	choice	

•  Example	
	return	maybe	!=	iffy;	

	should	be	recognized	as	5	tokens	
	
		
	i.e.,	!=	is	one	token,	not	two;	“iffy”	is	an	ID,	not	IF	followed	
by	ID(fy)	

UW CSE 401 Winter 2017 B-16

RETURN ID(maybe) NEQ ID(iffy) SCOLON

Lexical	ComplicaZons	

•  Most	modern	languages	are	free-form	
–  Layout	doesn’t	maNer	
– Whitespace	separates	tokens	

•  AlternaZves	
–  Fortran	–	line	oriented	
– Haskell,	Python	–	indentaZon	and	layout	can	imply	
grouping	

•  And	other	confusions	
–  In	C++	or	Java,	is	>>	a	shio	operator	or	the	end	of	two	
nested	templates	or	generic	classes?	

UW CSE 401 Winter 2017 B-17

Regular	Expressions	and	FAs	

•  The	lexical	grammar	(structure)	of	most	
programming	languages	can	be	specified	with	
regular	expressions	
–  (SomeZmes	a	liNle	cheaZng	is	needed)	

•  Tokens	can	be	recognized	by	a	determinisZc	
finite	automaton	
– Can	be	either	table-driven	or	built	by	hand	based	
on	lexical	grammar	

UW CSE 401 Winter 2017 B-18

Regular	Expressions	

•  Defined	over	some	alphabet	Σ	
– For	programming	languages,	alphabet	is	usually	
ASCII	or	Unicode	

•  If	re	is	a	regular	expression,	L(re)	is	the	
language	(set	of	strings)	generated	by	re	

UW CSE 401 Winter 2017 B-19

Fundamental	REs	

re L(re) Notes
a { a } Singleton set, for each a in Σ

ε { ε } Empty string

∅ { } Empty language

UW CSE 401 Winter 2017 B-20

OperaZons	on	REs	

re L(re) Notes

rs L(r)L(s) Concatenation

r|s L(r) ∪ L(s) Combination (union)

r* L(r)* 0 or more occurrences (Kleene
closure)

UW CSE 401 Winter 2017 B-21

•  Precedence:	*	(highest),	concatenaZon,	|	(lowest)	
•  Parentheses	can	be	used	to	group	REs	as	needed	

Examples	
re Meaning

+ single + character

! single ! character

= single = character

!= 2 character sequence "!="

xyzzy 5 character sequence ”xyzzy”

(1|0)* 0 or more binary digits

(1|0)(1|0)* 1 or more binary digits

0|1(0|1)* sequence of binary digits with no
leading 0’s, except for 0 itself

UW CSE 401 Winter 2017 B-22

AbbreviaZons	

Abbr. Meaning Notes

r+ (rr*) 1 or more occurrences

r? (r | ε) 0 or 1 occurrence

[a-z] (a|b|…|z) 1 character in given range

[abxyz] (a|b|x|y|z) 1 of the given characters

UW CSE 401 Winter 2017 B-23

•  The	basic	operaZons	generate	all	possible	regular	
expressions,	but	there	are	common	abbreviaZons	used	for	
convenience.		Some	examples:	

More	Examples	
re Meaning

[abc]+

[abc]*

[0-9]+

[1-9][0-9]*

[a-zA-Z][a-zA-Z0-9_]*

UW CSE 401 Winter 2017 B-24

AbbreviaZons	

•  Many	systems	allow	abbreviaZons	to	make	
wriZng	and	reading	definiZons	or	
specificaZons	easier	

	 	name	::=	re	

– RestricZon:	abbreviaZons	may	not	be	circular	
(recursive)	either	directly	or	indirectly	(else	would	
be	non-regular)	

UW CSE 401 Winter 2017 B-25

Example	
•  Possible	syntax	for	numeric	constants	

	digit	::=	[0-9]	
	digits	::=	digit+	
	number	::=	digits		(.	digits)?	
	 	 	 					([eE]	(+	|	-)?	digits)	?	

•  How	would	you	describe	this	set	in	English?	
•  What	are	some	examples	of	legal	constants	
(strings)	generated	by	number	?	
– What	are	the	differences	between	these	and	numeric	
constants	in	YFPL?		(Your	Favorite	Programming	Language)	

UW CSE 401 Winter 2017 B-26

Recognizing	REs	

•  Finite	automata	can	be	used	to	recognize	
strings	generated	by	regular	expressions	

•  Can	build	by	hand	or	automaZcally	
– Reasonably	straigh~orward,	and	can	be	done	
systemaZcally	

– Tools	like	Lex,	Flex,	JFlex	et	seq	do	this	
automaZcally,	given	a	set	of	REs	

UW CSE 401 Winter 2017 B-27

Finite	State	Automaton	
•  A	finite	set	of	states	

–  One	marked	as	iniZal	state	
–  One	or	more	marked	as	final	states	
–  States	someZmes	labeled	or	numbered	

•  A	set	of	transiZons	from	state	to	state	
–  Each	labeled	with	symbol	from	Σ,	or	ε	
–  Common	to	allow	mulZple	labels	(symbols)	on	one	edge	to	simplify	diagrams	

•  Operate	by	reading	input	symbols	(usually	characters)	
–  TransiZon	can	be	taken	if	labeled	with	current	symbol	
–  ε-transiZon	can	be	taken	at	any	Zme	

•  Accept	when	final	state	reached	&	no	more	input	
–  Slightly	different	in	a	scanner	where	the	FSA	is	a	subrouZne	that	accepts	the	

longest	input	string	matching	a	token	regular	expression,	starZng	at	the	current	
locaZon	in	the	input	

•  Reject	if	no	transiZon	possible,	or	no	more	input	and	not	in	final	state	(DFA)	
–  Some	versions	require	an	explicit	“error”	state	and	transiZons	to	it	on	all	“no	

legal	transiZon	possible”	input.		OK	to	omit	that	for	CSE	401	

UW CSE 401 Winter 2017 B-28

Example:	FSA	for	“cat”	

UW CSE 401 Winter 2017 B-29

a t c

DFA	vs	NFA	

•  DeterminisZc	Finite	Automata	(DFA)	
–  No	choice	of	which	transiZon	to	take	under	any	condiZon	
–  No	ε	transiZons	(arcs)	

•  Non-determinisZc	Finite	Automata	(NFA)	
–  Choice	of	transiZon	in	at	least	one	case	
–  Accept	if	some	way	to	reach	a	final	state	on	given	input	
–  Reject	if	no	possible	way	to	final	state	
–  i.e.,	may	need	to	guess	right	path	or	backtrack	

UW CSE 401 Winter 2017 B-30

FAs	in	Scanners	

•  Want	DFA	for	speed	(no	backtracking)	
•  But	conversion	from	regular	expressions	to	
NFA	is	easy	

•  Fortunately,	there	is	a	well-defined	procedure	
for	converZng	a	NFA	to	an	equivalent	DFA	
(subset	construcZon)	

UW CSE 401 Winter 2017 B-31

From	RE	to	NFA:	base	cases	

UW CSE 401 Winter 2017 B-32

a

ε

r	s	

UW CSE 401 Winter 2017 B-33

r s ε

r		|	s	

UW CSE 401 Winter 2017 B-34

r

s ε ε

ε ε

r	*	

UW CSE 401 Winter 2017 B-35

r

ε

ε ε

Exercise	

•  Draw	the	NFA	for:			b(at|ag)	|	bug	

UW CSE 401 Winter 2017 B-36

From	NFA	to	DFA	
•  Subset	construcZon	
–  Construct	a	DFA	from	the	NFA,	where	each	DFA	state	
represents	a	set	of	NFA	states	

•  Key	idea	
–  State	of	the	DFA	aoer	reading	some	input	is	the	set	of	all		
NFA	states	that	could	have	reached	aoer	reading	the	same	
input	

•  Algorithm:	example	of	a	fixed-point	computaZon	
•  If	NFA	has	n	states,	DFA	has	at	most	2n	states		
–  =>	DFA	is	finite,	can	construct	in	finite	#	steps	

•  ResulZng	DFA	may	have	more	states	than	needed	
–  See	books	for	construcZon	and	minimizaZon	details	

UW CSE 401 Winter 2017 B-37

Exercise	

•  Build	DFA	for	b(at|ag)|bug,	given	the	NFA	

UW CSE 401 Winter 2017 B-38

To	Tokens 		
•  A	scanner	is	a	DFA	that	finds	the	next	token	each	Zme	it	is	

called	
•  Every	“final”	state	of	a	DFA	emits	(returns)	a	token	
•  Tokens	are	the	internal	compiler	names	for	the	lexemes	

== 	 	becomes	EQUAL	
(becomes	LPAREN	
while 	becomes	WHILE	
xyzzy 	becomes	ID(xyzzy)	

•  You	choose	the	names	
•  Also,	there	may	be	addiZonal	data	…	\r\n	might	count	lines;	

token	data	structure	might	include	source	line	numbers	

UW CSE 401 Winter 2017 B-39

DFA	=>	Code	
•  OpZon	1:	Implement	by	hand	using	procedures	
–  one	procedure	for	each	token	
–  each	procedure	reads	one	character	
–  choices	implemented	using	if	and	switch	statements	

•  Pros	
–  straigh~orward	to	write	
–  fast	

•  Cons	
–  a	lot	of	tedious	work	
– may	have	subtle	differences	from	the	language	
specificaZon	

UW CSE 401 Winter 2017 B-40

DFA	=>	Code	[conZnued]	

•  OpZon	1a:	Like	opZon	1,	but	structured	as	a	
single	procedure	with	mulZple	return	points	
–  choices	implemented	using	if	and	switch	statements	

•  Pros	
–  also	straigh~orward	to	write	
–  faster	

•  Cons	
–  a	lot	of	tedious	work	
– may	have	subtle	differences	from	the	language	
specificaZon	

UW CSE 401 Winter 2017 B-41

DFA	=>	code	[conZnued]	
•  OpZon	2:	use	tool	to	generate	table	driven	scanner	
–  Rows:	states	of	DFA	
–  Columns:	input	characters	
–  Entries:	acZon	

•  Go	to	next	state	
•  Accept	token,	go	to	start	state	
•  Error	

•  Pros	
–  Convenient	
–  Exactly	matches	specificaZon,	if	tool	generated	

•  Cons	
–  “Magic”	

UW CSE 401 Winter 2017 B-42

DFA	=>	code	[conZnued]	
•  OpZon	2a:	use	tool	to	generate	scanner	
–  TransiZons	embedded	in	the	code	
–  Choices	use	condiZonal	statements,	loops	

•  Pros	
–  Convenient	
–  Exactly	matches	specificaZon,	if	tool	generated	

•  Cons	
–  “Magic”	
–  Lots	of	code	–	big	but	potenZally	quite	fast	

•  Would	never	write	something	like	this	by	hand,	but	can	
generate	it	easily	enough	

UW CSE 401 Winter 2017 B-43

Example:	DFA	for	hand-wriNen	
scanner	
•  Idea:	show	a	hand-wriNen	DFA	for	some	typical	

programming	language	constructs	
–  Then	use	to	construct	hand-wriNen	scanner	

•  Se�ng:	Scanner	is	called	whenever	the	parser	needs	a	new	
token	
–  Scanner	stores	current	posiZon	in	input	
–  From	there,	use	a	DFA	to	recognize	the	longest	possible	input	
sequence	that	makes	up	a	token	and	return	that	token;	save	
updated	posiZon	for	next	Zme	

•  Disclaimer:	Example	for	illustraZon	only	–	you’ll	use	tools	
for	the	course	project	
–  &	we’re	abusing	the	DFA	notaZon	a	liNle	–	not	all	arrows	in	the	
diagram	correspond	to	consuming	an	input	character,	but	
meaning	should	be	preNy	obvious	

UW CSE 401 Winter 2017 B-44

Scanner	DFA	Example	(1)	

UW CSE 401 Winter 2017 B-45

0

Accept LPAREN
(

2

Accept RPAREN
)

3

whitespace
or comments

Accept SCOLON
;

4

Accept EOF
end of input

1

Scanner	DFA	Example	(2)	

UW CSE 401 Winter 2017 B-46

Accept NEQ
! 6

Accept NOT 7

5 =

[other]

Accept LEQ
< 9

Accept LESS 10

8 =

[other]

Scanner	DFA	Example	(3)	

UW CSE 401 Winter 2017 B-47

[0-9]

Accept INT 12

11

[other]

[0-9]

Scanner	DFA	Example	(4)	

•  Strategies	for	handling	idenZfiers	vs	keywords	
–  Hand-wriNen	scanner:	look	up	idenZfier-like	things	in	table	of	keywords	to	

classify	(good	applicaZon	of	perfect	hashing)	
–  Machine-generated	scanner:	generate	DFA	will	appropriate	transiZons	to	

recognize	keywords	
•  Lots	’o	states,	but	efficient	(no	extra	lookup	step)	

UW CSE 401 Winter 2017 B-48

[a-zA-Z]

Accept ID or keyword 14

13

[other]

[a-zA-Z0-9_]

ImplemenZng	a	Scanner	by	Hand	–	
Token	RepresentaZon	
•  A	token	is	a	simple,	tagged	structure	

public	class	Token	{	
	public	int	kind;													//	token’s	lexical	class	
	public	int	intVal; 	//	integer	value	if	class	=	INT	
	public	String	id; 	 	//	actual	idenZfier	if	class	=	ID	
	//	lexical	classes	
	public	staZc	final	int	EOF	=	0; 	//	“end	of	file”	token	
	public	staZc	final	int	ID			=	1; 	//	idenZfier,	not	keyword	
	public	staZc	final	int	INT	=	2; 	//	integer	
	public	staZc	final	int	LPAREN	=	4;	
	public	staZc	final	int	SCOLN			=	5;	
	public	staZc	final	int	WHILE			=	6;	
	//	etc.	etc.	etc.	…	

UW CSE 401 Winter 2017 B-49

Simple	Scanner	Example	
//	global	state	and	methods	
	
staZc	char	nextch; 	//	next	unprocessed	input	character	
	
//	advance	to	next	input	char	
void	getch()	{	…	}	
	
//	skip	whitespace	and	comments	
void	skipWhitespace()	{	…	}	
	

UW CSE 401 Winter 2017 B-50

Scanner	getToken()	method	
//	return	next	input	token	
public	Token	getToken()	{	
		Token	result;	
	
		skipWhiteSpace();	
	
		if	(no	more	input)	{	

	result	=	new	Token(Token.EOF);	return	result;	
		}	
	
		switch(nextch)	{	

	case	'(':	result	=	new	Token(Token.LPAREN);	getch();	return	result;		
	case	‘)':	result	=	new	Token(Token.RPAREN);	getch();	return	result;	
	case	‘;':	result	=	new	Token(Token.SCOLON);	getch();	return	result;	
		
	//	etc.	…	

UW CSE 401 Winter 2017 B-51

getToken()	(2)	
	case	'!':	//	!	or	!=	
	 				getch();	
	 				if	(nextch	==	'=')	{	
	 						result	=	new	Token(Token.NEQ);	getch();	return	result;	
	 				}	else	{	
	 						result	=	new	Token(Token.NOT);	return	result;	
	 				}	

	 		
	case	'<':	//	<	or	<=	
	 				getch();	
	 				if	(nextch	==	'=')	{	
	 						result	=	new	Token(Token.LEQ);	getch();	return	result;	
	 				}	else	{	
	 						result	=	new	Token(Token.LESS);	return	result;	
	 				}	
	//	etc.	…	

UW CSE 401 Winter 2017 B-52

getToken()	(3)	
		case	'0':	case	'1':	case	'2':	case	'3':	case	'4':		
		case	'5':	case	'6':	case	'7':	case	'8':	case	'9':		
	 				//	integer	constant	
	 				String	num	=	nextch;	
	 				getch();	
	 				while	(nextch	is	a	digit)	{	
	 							num	=	num	+	nextch;	getch();	
	 				}	
	 				result	=	new	Token(Token.INT,	Integer(num).intValue());	
	 				return	result;	
	…	

UW CSE 401 Winter 2017 B-53

getToken()	(4)	
	case	'a':	…	case	'z':	
	case	'A':	…	case	'Z':		//	id	or	keyword	
	 	string	s	=	nextch;	getch();	
	 	while	(nextch	is	a	leNer,	digit,	or	underscore)	{	
	 				s	=	s	+	nextch;	getch();	
	 	}	
	 	if	(s	is	a	keyword)	{	
	 				result	=	new	Token(keywordTable.getKind(s));	
	 	}	else	{	
	 				result	=	new	Token(Token.ID,	s);	
	 	}	
	 	return	result;	

UW CSE 401 Winter 2017 B-54

MiniJava	Scanner	GeneraZon	

•  We’ll	use	the	jflex	tool	to	automaZcally	create	
a	scanner	from	a	specificaZon	file,		

•  We’ll	use	the	CUP	tool	to	automaZcally	create	
a	parser	from	a	specificaZon	file,		

•  Token	class	defs.	shared	by	jflex	and	CUP.	
Lexical	classes	are	listed	in	CUP’s	input	file	and	
it	generates	the	token	class	definiZon.	

•  Details	in	next	week’s	secZon	

UW CSE 401 Winter 2017 B-55

Coming	ANracZons	

•  First	homework:	paper	exercises	on	regular	
expressions,	automata,	etc.	

•  Then:	first	part	of	the	compiler	assignment	–	
the	scanner	

•  Next	topic:	parsing	
– Will	do	LR	parsing	first	–	we	need	this	for	the	
project,	then	LL	(recursive-descent)	parsing,	which	
you	should	also	know.	

UW CSE 401 Winter 2017 B-56

