
 CSE 401 Midterm Exam 2/8/17 Sample Solution

 Page 1 of 7

Question 1. (14 points) Regular expressions and DFAs. One format for writing dates
gives the date first, a 3-letter month abbreviation in the middle, and the year last (for this
problem we’ll use 2-digit years to keep things shorter). Examples are 8feb17 (today),
31dec99, 1jan00, and 4jul76. More specifically, a date is a string ddmmmyy or
dmmmyy, where:

• d or dd is a date in the range 1-31 with no leading zeros,
• mmm is a month consisting of three lower-case letters
• yy is a year in the range 00 to 99.

To simplify the problem, any date in the range 1-31 is valid for any month (i.e., don’t
worry about trying to prevent dates like 30feb12), and any 3-letter sequence of lower-
case letters is valid for the month.

You must restrict yourself to the basic regular expression operations covered in class and
on homework assignments: r s, r | s, r*, r+, r?, character classes like [a-cxy] and [^aeiou],
abbreviations name=regexp, and parenthesized regular expressions. No additional
operations that might be found in the “regexp” packages in various Unix programs,
scanner generators like JFlex, or language libraries.

(a) (6 points) Give a regular expression that generates all valid dates according to the
above rules.

([12][0-9]? | 3[01]? | [4-9]) [a-z] [a-z] [a-z] [0-9] [0-9]

(b) (8 points) Draw a DFA that accepts all valid dates according to the above rules.
(There is additional space on the next page for your DFA if it doesn’t fit here.)

1-2

3 0-1

0-9
a-z a-z a-z 0-9 0-9

a-z

a-z

4-9

 CSE 401 Midterm Exam 2/8/17 Sample Solution

 Page 2 of 7

Question 2. (14 points) Scanners and tokens. Just for fun, we ran our MiniJava scanner
using a file containing the following C++ code fragment as input:

bool Thing::f(int x) {
 return this->val <= x;
}

Below, list in order the tokens that would be returned by a scanner for MiniJava as it
reads this input. If there is a lexical error in the input, indicate where that error is
encountered by writing a short explanation of the error in between the valid tokens that
appear before and after the error(s) (something brief like “illegal character #” if a “#” was
found in the file would be fine). The token list should include additional tokens found
after any error(s) in the input. You may use any reasonable token names (e.g., LPAREN,
ID(x), etc.) as long as your meaning is clear.

A copy of the MiniJava grammar is attached as the last page of the test. You may
remove it for reference while you answer this question. You should assume the scanner
implements MiniJava syntax as defined in that grammar, with no extensions to the
language.

ID(bool) ID(Thing)

Invalid character “:”

Invalid character “:”

ID(f) LPAREN INT ID(x) RPAREN LBRACE

RETURN THIS MINUS

Invalid character “>”

ID(val) LESS EQUAL ID(x) SCOLN RBRACE

 CSE 401 Midterm Exam 2/8/17 Sample Solution

 Page 3 of 7

Question 3. (12 points) Ambiguity. Consider the following grammar:

 P ::= V | V X
 V ::= V w | ε
 X ::= w

Is this grammar ambiguous? If so, give a proof that it is by showing two distinct parse
trees, or two distinct leftmost (or rightmost) derivations, for some string. If not, give an
informal, but precise argument why it is not ambiguous.

Yes.

Here are two distinct leftmost derivations of w w:

P => V => V w => V w w => w w

P => V X => V w X => w X => w w

There are, of course, many other examples.

 CSE 401 Midterm Exam 2/8/17 Sample Solution

 Page 4 of 7

Question 4. (34 points) The you-can’t-say-you-weren’t-expecting-it parsing question.
Here is a tiny grammar.

 0. S′ ::= S $ ($ represents end-of-file)
 1. S ::= A B
 2. S ::= c
 3. A ::= a

 4. A ::= ε
 5. B ::= b
 6. B ::= B b

(a) (12 points) Draw the LR(0) state machine for this grammar.

(b) (8 points) Compute nullable and the FIRST and FOLLOW sets for the nonterminals
S, A, and B in the above grammar:

Symbol nullable FIRST FOLLOW
S no a, b, c $

A yes a b

B no b b, $
(continued on next page)

S‘	::=	.	S	$	
S	::=	.	A	B	
S	::=	.	c	
A	::=	.	a	
A	::=	.	

S	::=	A	.	B	
B	::=	.	b	
B	::=	.	B	b	

S‘	::=	S	.	$	1	 0	

4	

6	

5	

7	

S	

A	

S	::=	c	.	 2	
c	

A	::=	a	.	
a	

3	

B	::=	b	.	
b	

S	::=	A	B	.	
B	::=	B	.	b	

B	

B	::=	B	b	.	
b	

 CSE 401 Midterm Exam 2/8/17 Sample Solution

 Page 5 of 7

Question 4. (cont.) Grammar repeated from previous page for reference:

 0. S′ ::= S $
 1. S ::= A B
 2. S ::= c
 3. A ::= a

 4. A ::= ε
 5. B ::= b
 6. B ::= B b

(c) (10 points) Write the LR(0) parse table for this grammar based on your LR(0) state
machine in your answer to part (a).

 a b c $ S A B

0 acc

1 r4, s3 r4 r4, s2 r4 g0 g4

2 r2 r2 r2 r2

3 r3 r3 r3 r3

4 s5 g6

5 r5 r5 r5 r5

6 r1 r1, s7 r1 r1

7 r6 r6 r6 r6

(d) (2 points) Is this grammar LR(0)? Why or why not?

No. State 1 has a shift/reduce conflict on inputs a and c, and state 6 has a
shift/reduce conflict on input b.

(e) (2 points) Is this grammar SLR? Why or why not?

Yes. In state 1, FOLLOW(A) only contains b, so we would only reduce if b is the
next symbol. In state 6, FOLLOW(S) is only the end-of-file marker $, so we would
not reduce unless we had reached the end of the input.

 CSE 401 Midterm Exam 2/8/17

 Page 6 of 7

Question 5. (16 points) LL parsing. Here is the grammar from the previous question,
but without the extra S' ::= S $ production that we added for the LR parser.

 1. S ::= A B
 2. S ::= c
 3. A ::= a

 4. A ::= ε
 5. B ::= b
 6. B ::= B b

Does this grammar satisfy the LL(1) condition? Give a technical justification for your
answer. If it is not LL(1), change the grammar so that it is suitable for LL(1) parsing
without changing the language that it generates.

Hint: It may save some time to compute the FIRST and FOLLOW sets requested in the
previous question before working on this one.

This question should have been phrased a bit differently, something like “Can this
grammar be used as the basis for a predictive parser with no backtracking (i.e.,
LL(1).” The reason is that asking about the LL(1) condition is a bit too narrow.
Although it is true that in all of the X ::= α, X ::= β productions for the same non-
terminal X, FIRST(α) and FIRST(β) are disjoint, that isn’t quite enough when there
is a production like A ::= ε in the grammar.

In that case, since A is nullable, we need to look at FOLLOW(A) when we are
deciding between productions 3 and 4 during a top-down parse. Since FOLLOW(A)
is { b }, and that is disjoint from FIRST(a), which is { a }, we don’t have a conflict.

We could also fold all of the productions for A into the first production and we get
the following rules for S:

S ::= a B | B | c

That eliminates A from the grammar. Since FIRST(B) is { b }, the three possibilities
for S have disjoint FIRST sets and that clears up that problem.

Because of the wording of the question, we did not make significant deductions for
answers that covered the disjoint FIRST sets but missed the need to check
FOLLOW sets or otherwise change the grammar because of the ε-production.

The other issue is the direct left recursion in rule 6. This can be eliminated by
rewriting productions 5 and 6 as follows, or doing something similar:

5. B ::= b C
6. C ::= b C | ε

 CSE 401 Midterm Exam 2/8/17

 Page 7 of 7

Question 6. (10 points, 1 each) Different parts of the front-end of a compiler detect
different errors in source programs. For each of the following possible errors, indicate
which part of the front-end of a MiniJava compiler would detect the error by filling in the
blank with scan, if the scanner would detect the error; parse, if the parser would
detect the error; sem, if the semantics/type-checker phase would detect the error; or
can’t, if the front end of the compiler cannot or is not guaranteed to detect the error.

Hint: think carefully about what, exactly, each part of the front end of the compiler does.
The MiniJava grammar is attached as the last page of this exam for reference. You may
remove it from the exam if you wish.

__sem__ Identifier x is not declared in the statement x=17;

__sem__ Identifier x has type boolean in the statement x=17;

__parse__ There is no <= operator in MiniJava
(This one may seem a little surprising, but since < and = are both valid MiniJava
tokens, the scanner will deliver them to the parser, which will then discover that
they cannot appear adjacent to each other in a MiniJava program.)

__scan__ In the expression i%j, there is no % operator in MiniJava

__sem__ Boolean values cannot be multiplied by integers (i.e., 4*true is illegal)

__parse__ Missing expression following while in while () x=x+1;

__scan__ # is not a legal character in a MiniJava program

__can’t__ x has the value -1 in the expression new int[x]

__parse__ Missing object reference in a MiniJava method call (i.e., f(17) is not
possible but this.f(17) is allowed).
(This is another one that caught several people. The parser will catch this since the
grammar can’t generate a method call without “expression.” in front of the method
name.)

__sem__ In the method call this.f(17), the class of the expression this does not
contain or inherit a method f that has a single parameter of type int.

