Section 9: Compiling Constraints

In this section, we will practice compiling 401, programs into SAT.

401, is an extension of our 401 language. It has the following additional constructs
which allow us to express program constraints:

e assert(E); /I Add a constraint stating that E is true
e choose(); /I Resolves to a value that satisfies all program constraints

SAT is our language for expressing constraints. It has the following syntax:

e (a Int) /[Variable declaration. Supported types are Int and Bool
e (a + b) /I Arithmetic operators (+, -, * ...)

e (a=0>b) /I Equivalence operator. Not assignment!

e (a=b V =(a=10)) // Logical connectives (V,A, ™)

e ct(a=b) /I Defines constraint that a must be equal to b

e ite(a>b,a=1,a=2) // Syntactic sugarfor(a>b A a=1) V(~(a>b) A a=2)

Exercise 1: Polynomials

a) Using the translation rules from the last lecture, convert the following 401, code for
solving the polynomial x? + 2y + 3 to SAT.

def x;

def y;

def poly;

x = choose();

y = choose();

poly = x * x + 2 *y + 3;
assert(poly == 0);

Answer:

b) Here is another version of 401, code computing the same polynomial:

def x;

def y;

def poly;

X = choose();

y = choose();

poly = x * Xx;

poly = poly + 2 * y;
poly = poly + 3;
assert(poly == 0);

Explain briefly, why this code needs to be re-written before it can be translated to SAT?

Re-write the code to eliminate the problem:

Exercise 2: Sorting

a) The following 401, code uses bubble sorting algorithm to sort the array arr.

lambda bubbleSort(array){
// range(0,3) iterates @ <= index < 3
for(index in range(90,3) {
if(arr[index] > arr[index + 1]){
def temp = arr[index];
arr[index] = arr[index + 1];
arr[index + 1] = temp;

}

def arr = {};
arr[0] = 10;
arr[1] = 20;
arr[2] = 15;
arr[3] = 5;
bubbleSort(arr);

Re-write the above code such that it may be translated to SAT. Hint: Generate a new
variable for each index of the array.

b) In this example, the length of arr is static. Explain briefly, how would you handle the
case where the length of the array was dynamic / unknown?

c) Translate the rewritten code from part (a) to SAT.

Exercise 3: Map Coloring

In this exercise we want to find out a way to color the map in such a way that any two
countries on the map that share a border have a different color. A country can only be
colored either red, green or blue. The following 401, code defines the constraints.

/I'5 Countries on the map
def countries = {0=A, 1=B, 2=C, 3=D, 4=E}

/I Dictionary mapping countries to the list of neighbours
def neighbours = {}

neighbours[A] = {@=B, 1=D}
neighbours[B] = {0=A, 1=D, 2=E}
neighbours[C] = {©=E}
neighbours[D] = {@=A, 1=B, 2=E}
neighbours[E] = {0=B, 1=C, 2=D}

/I Colors of each country. Some unknown
def colors = {}

colors[A] = Red
colors[B] = Blue
colors[C] = Choose()
colors[D] = Choose()
colors[E] = Choose()

/I Define constraints
for(country in countries){
for(neighbour in neighbours[country]){
assert(colors[country] != colors[neighbour]);

}

Translate the code to SAT.

