Section 5 - Earley parser & Disambiguation

We're going to spend this section exploring ambiguity.
We'll start with a small language that allows us to multiply
and add the numbers 1, 2, and 3. It's not an especially
useful language, but today we’re super interested in the
program 1 + 2 * 3, soit’s perfect for us! We want both
operators to be left-associative, and we want multiplication
to have higher precedence than addition.

Grammar 1

%left +
%left *

E->EOQOE|V
O->+]|*
V->1]2]3

Is this grammar ambiguous?

Please complete the earley parsing visualization for
Grammar 1 on this string:

1+2*3

O—0O0—F—0—F/—0—0—7—70

Grammar 2

%left +
%left *

E->E+E|E*E|V
V->1]2]3

Is this grammar ambiguous?

Please complete the parsing visualization for Grammar 2 on
this string:

1+2*3

o—0O0—F—0O0—F0—0—F—0

Grammar 3

E->E+E2|E2
E2->E2*V|V
V->1]2]3

Is this grammar ambiguous?

Please complete the parsing visualization for Grammar 3 on
this string:

1+2*3

Let’s play with if statements.

Grammar 4

S-> ifEthen S
| if E then S else S
| OTHERSTUFF

Grammar 5

Using your answers above, complete grammar 5 to remove
the problem.

Hint: We want to prevent: if(E1){if(E2){S3}}else{S4}.
Hint: We want all unmatched thens (thens without elses) to
happen inside else cases.

Is this grammar ambiguous?
Please draw a parse tree for Grammar 4 on this string:

if likeHorses then if likeFlying then print
“Pegasus” else print “Mr. Ed”

What is the issue with this language / parser?

Suggest a language specification that would resolve this
issue?

S -> M # all thens matched!
| U # some thens unmatched
M->if then__ else

| OTHERSTUFF
U->if _ then
|if __ then__ else

Does this grammar accept the same language as Grammar
1?
Please draw a parse tree for Grammar 5 on this string:

if likeHorses then if likeFlying then print
“Pegasus” else print “Mr. Ed”

