
1

What can you do with your 401 education

Just-in-time compilation
New language design

Ras Bodik
Alvin Cheung
Maaz Ahmad

Talia Ringer
Ben Tebbs

Hack Your Language!
CSE401 Winter 2016
Introduction to Compiler Construction

Announcements

Final quiz tomorrow
– please attend your assigned section
– review session tonight: EEB 125, 7pm

Project presentations next Tuesday
– Enjoy spring break!

2

What to do with 401 skills

Managed runtimes
– Just-in-time compilation and other tricks

Language design
– rfig, rake, and memoize

3

Case study: v8 Internals

4

The V8 engine

• Latest JS engine from Google

• Used for both client side (Chrome) and server side
(node.js) applications

• Includes a Just-In-Time (JIT) compiler that directly
compiles to x86
– No bytecode or intermediate code generated

5

C++ and JS: compute the 25,000th prime

6

C++ and unoptimized JS code

7
C++ is 5x times faster

V8 compilation

• V8 actually consists of two compilers
– Full compiler that generates code quickly

• No type analysis / code optimization

– Optimizing compiler that is used to compile code on the
fly

• “Just-in-time” compiler that heavily optimized code that might
use cutting-edge (read: unstable) features

• Need to wrap code around “try/catch” blocks!
• Example: code that utilizes platform dependent instructions /

custom hardware accelerators

8

Just-in-time Features

9

Prototypes in Javascript

• JS is prototype-based
• Prototypes are cloned as new objects are created

– Why is this costly?

• We have seen how Lua implements objects using
metatables
– Idea: extract shared metadata into a common structure

• V8 applies similar concept as hidden classes

10

Hidden classes

function Point(x, y) {
this.x = x;
this.y = y;

}
var p = new Point(11, 22);
var q = new Point(33, 44);

11

Properties

11
22

Properties

11
22

Field Offset
x 0
y 1

Hidden class

p

q

How can this be
set up dynamically?

Hidden class
• Key idea: create a new hidden class every time a

new property is added to an object

12

function Point(x, y) {
this.x = x;
this.y = y;

}
var p = new Point(11, 22);
var q = new Point(33, 44);

Field Offset

Hidden
classesProperties

p

Hidden class
• Key idea: create a new hidden class every time a

new property is added to an object

13

function Point(x, y) {
this.x = x;
this.y = y;

}
var p = new Point(11, 22);
var q = new Point(33, 44);

Field Offset
x 0

Field Offset

Hidden
classesProperties

11p

Hidden class
• Key idea: create a new hidden class every time a

new property is added to an object

14

function Point(x, y) {
this.x = x;
this.y = y;

}
var p = new Point(11, 22);
var q = new Point(33, 44); Field Offset

x 0
y 1

Field Offset
x 0

Field Offset

Hidden
classesProperties

11
22

p

Hidden class
• Key idea: create a new hidden class every time a

new property is added to an object

15

function Point(x, y) {
this.x = x;
this.y = y;

}
var p = new Point(11, 22);
var q = new Point(33, 44); Field Offset

x 0
y 1

Field Offset
x 0

Field Offset

Hidden
classesProperties

11
22

p

q

Hidden class
• Key idea: create a new hidden class every time a

new property is added to an object

16

function Point(x, y) {
this.x = x;
this.y = y;

}
var p = new Point(11, 22);
var q = new Point(33, 44); Field Offset

x 0
y 1

Field Offset
x 0

Field Offset

Hidden
classesProperties

11
22

p

Properties
q

Hidden class
• Key idea: create a new hidden class every time a

new property is added to an object

17

function Point(x, y) {
this.x = x;
this.y = y;

}
var p = new Point(11, 22);
var q = new Point(33, 44); Field Offset

x 0
y 1

Field Offset
x 0

Field Offset

Hidden
classesProperties

11
22

p

Properties

33q

Hidden class
• Key idea: create a new hidden class every time a

new property is added to an object

18

function Point(x, y) {
this.x = x;
this.y = y;

}
var p = new Point(11, 22);
var q = new Point(33, 44); Field Offset

x 0
y 1

Field Offset
x 0

Field Offset

Hidden
classesProperties

11
22

Properties

33
44

p

q

Hidden class
• Key idea: create a new hidden class every time a

new property is added to an object

19

function Point(x, y) {
this.x = x;
this.y = y;

}
var p = new Point(11, 22);
var q = new Point(33, 44);
q.z = 55 Field Offset

x 0
y 1

Field Offset
x 0

Field Offset

Hidden
classesProperties

11
22

Properties

33
44
55

p

q

Field Offset
x 0
y 1
z 2

Representing values

• Interoperate between objects and small ints

20

Object pointer 1

Objects

31-bit signed integer 0

Small integers

Tag

Double

1.2345

Representing arrays

• Simple: use dictionaries
– What might be a performance issue?

• Better: specialize based on keys
– If keys are consecutive, use pre-allocated linear array
– If keys are sparse and non-consecutive, use

hashtable

• Special case: array of doubles
– Simple: store array of object pointers
– Better: store raw double values instead

21

Back to hidden classes

22

var a = new Array();

a[0] = 77;
a[1] = 88;
a[2] = 0.2;
a[3] = true;

How many hidden
classes are created?

contents

77

Hidden class

length: 1

elements

Arrays
(only small ints)

Back to hidden classes

23

var a = new Array();

a[0] = 77;
a[1] = 88;
a[2] = 0.2;
a[3] = true;

How many hidden
classes are created?

contents

77
88

Hidden class

length: 2

elements

Arrays
(only small ints)

Back to hidden classes

24

var a = new Array();

a[0] = 77;
a[1] = 88;
a[2] = 0.2;
a[3] = true;

How many hidden
classes are created?

contents

77
88

Hidden class

length: 3

elements

Arrays
(only small ints)

Arrays
(only doubles)

contents

77.0
88.0
0.2

Back to hidden classes

25

var a = new Array();

a[0] = 77;
a[1] = 88;
a[2] = 0.2;
a[3] = true;

How many hidden
classes are created?

contents

77
88

Hidden class

length: 3

elements

Arrays
(only small ints)

Arrays
(only doubles)

Arrays
(objects)contents

77.0
88.0
0.2

contents

77
88

true

0.2

Why does this generate better code?
var a = [77, 88, 0.2, true];

Inline caches

26

...
push [ebp+0x8]
mov eax,[ebp+0xc]
mov edx,eax
mov ecx,0x50b155dd
call LoadIC_Initialize ;; this.primes
push eax
mov eax,[ebp+0xf4]
pop edx
mov ecx,eax
call KeyedLoadIC_Initialize ;; this.primes[i]
pop edx
call BinaryOpIC_Initialize Mod ;; candidate % this.primes[i]

Unoptimized code for candidate % this.primes[i]

Inline caches

27

...
push [ebp+0x8]
mov eax,[ebp+0xc]
mov edx,eax
mov ecx,0x50b155dd
call 0x311286e0
push eax
mov eax,[ebp+0xf4]
pop edx
mov ecx,eax
call 0x31129ae0
pop edx
call 0x3112ade0

Key idea: skip type checking if we know the type of
variables

Code that fetch from primes
array from a Prime object

Code that fetch 0th element
from primes array

Code that calculates
small int % small int

We can even inline these calls!

Function inlining

• Non-polymorphic functions can be inlined entirely

28

function add (x, y) {
return x + y;

}

add(1, 2); // + is non-polymorphic
add(“a”, “b”); // + is now polymorphic

• Polymorphic functions requires generating call
instructions
– Need to check type of object that calls the function

After all these…

29JS is 60% faster than C++!!

Don’t be too happy yet

30JS is still 17% slower than C++ -O3…

Lessons

• Static-typing is a good thing J

• Opportunities to apply implementation techniques
from statically-typed to dynamic-typed languages

• Techniques that you learned in this class are directly
translatable to building real-world compilers!!

31

rfig

32

Rfig: A slide presentation language in Ruby

You need to give talks but get tired of PowerPoint.
Or you realize you are not a WYSIWYG person.
You embed a domain-specific language (DSL) into Ruby.

see slide 8 in http://cs164fa09.pbworks.com/f/01-rfig-tutorial.pdf

33…

The animation in rfig, a Ruby-based language

slide!('Overlays',
'Using overlays, we can place things on top of each other.',
'The pivot specifies the relative positions',
'that should be used to align the objects in the overlay.',

overlay('0 = 1', hedge.color(red).thickness(2)).pivot(0, 0),

staggeredOverlay(true, # True means that old objects disappear
'the elements', 'in this', 'overlay should be centered', nil).pivot(0, 0),

cr, pause, # pivot(x, y): -1 = left, 0 = center, +1 = right

staggeredOverlay(true,
'whereas the ones', 'here', 'should be right justified', nil).pivot(1, 0),

nil) { |slide| slide.label('overlay').signature(8) }

rfig was developed by Percy Liang, a Berkeley student 34

rake

35

rake

rake: an internal DSL, embedded in Ruby
Author: Jim Weirich

functionality similar to make
– has nice extensions, and flexibility, since it's embedded
– ie can use any ruby commands

even the syntax is close (perhaps better):
– embedded in Ruby, so all syntax is legal Ruby

http://martinfowler.com/articles/rake.html

36

Example rake file

task :codeGen do
do the code generation

end

task :compile => :codeGen do
do the compilation

end

task :dataLoad => :codeGen do
load the test data

end

task :test => [:compile, :dataLoad] do
run the tests

end 37

memoize

38

memoize

Memoize: a replacement for make.
Author: Bill McCloskey, Berkeley

Allows writing build scripts in "common" languages
eg in Python or the shell
rather than forcing you to rely on make's hopelessly

recondite makefile language.

http://www.cs.berkeley.edu/~billm/memoize.html

39

Example: a shell script calling memoize

#!/bin/sh
memoize.py gcc -c file1.c
memoize.py gcc -c file2.c
memoize.py gcc -o program file1.o file2.o

40

Example: a python script calling memoize

#!/usr/bin/env python
import sys
from memoize import memoize
def run(cmd):

status = memoize(cmd)
if status: sys.exit(status)

run('ocamllex x86lex.mll')
run('ocamlyacc x86parse.mly')
run('ocamlc -c x86parse.mli')
run('ocamlc -c x86parse.ml')
run('ocamlc -c x86lex.ml')
run('ocamlc -c main.ml')
run('ocamlc -o program x86parse.cmi x86parse.cmo

x86lex.cmo main.cmo')
41

How memoize works

Key idea: determine if a command needs to run
Assumptions: a command is a pure function

– its output depends only on its input files
– common for compilers and other build tools

Computing Dependences (what cmd depends on):
– uses strace to intercept system calls, like open
– r = os.system('strace -f -o %s -e trace=%s /bin/sh -c "%s"' %

(outfile, calls, ecmd))

Computing file modification times:
– Alternative 1: use system file modification time
– Alternative 2: compute MD5 hash value for a value

Keep dependences and times in a file 42

