
1

Lecture 18: Code optimization and
Garbage Collection

Using solvers for code generation
Garbage collection in managed runtimes

Ras Bodik
Alvin Cheung
Maaz Ahmad

Talia Ringer
Ben Tebbs

Hack Your Language!
CSE401 Winter 2016
Introduction to Compiler Construction

Announcements

• HW4
– Due tonight at 11pm (no late days)

• 50-min final quiz this Thursday in section
– 2 pages of single-sided hand written notes
– practice exams on course website
– please attend your assigned section

2

Outline for today

• Techniques for code generation (continued)
– Classical and solver-based techniques

• Managed runtimes
– Garbage collection

3

Code optimization
(complete slides including from last lecture)

4

Scope of optimizations

Scope of study for optimizations:

• peephole: look at adjacent instructions

• local: look at straight-line sequence of statements

• global(intraprocedural): look at whole procedure

• interprocedural: look across procedures

Larger scope ⇒ better optimization,
but more cost & complexity

Style of optimizations

How is the program is improved

• naïve: no optimization after code generation
• rewrite rules: used in peephole optimization
• instruction selection: tree covering
• deductive: derive equivalent programs
• superoptimization and synthesis: search for

a correct program

Naïve code generation

7

Naïve code generation

For each AST node, generate a sequence of instructions.
each node code-generated individually

The same as bytecode generation (see previous lectures).
Generation of assembly code is the same but with labels.

Pros: simple
each node code-generated individually

Cons: suboptimal code
each node code-generated individually

Peephole optimization

9

Peephole optimizations

Replace a sequence of adjacent instructions with
a more optimal sequence

sw $8, 12($fp)
lw $12, 12($fp)

⇒

sw $8, 12($fp)
mv $12, $8

sub sp, 4, sp
mov r1, 0(sp)

⇒

mov r1, -(sp)

Instruction selection
via tree coverage

11

Better code-gen rules

Rather than translating one AST node to an instruction
sequence, we map multiple nodes to a sequence.

Tree covering as parsing

13

Deductive optimizers

14

Denali: synthesis with axioms and E-graphs

∀	𝑛	. 	2𝑛 = 2∗∗𝑛

∀	𝑘,𝑛	. 	𝑘 ∗ 2𝑛 = 𝑘<<𝑛

∀𝑘, 𝑛: : 	𝑘 ∗ 4 + 𝑛	 = s4addl(𝑘,𝑛)

reg6 ∗ 4 + 1
specification

s4addl reg6,1
synthesized program

[Joshi, Nelson, Randall PLDI’02]

15

Two kinds of axioms

∀	𝑛	. 	2𝑛 = 2∗∗𝑛

∀	𝑘,𝑛	. 	𝑘 ∗ 2𝑛 = 𝑘<<𝑛

∀𝑘, 𝑛: : 	𝑘 ∗ 4 + 𝑛	 = s4addl(𝑘,𝑛)

Instruction semantics: defines the language

Algebraic properties: associativity of add64, memory modeling, …

16

Two kinds of axioms

∀	𝑛	. 	2𝑛 = 2∗∗𝑛

∀	𝑘,𝑛	. 	𝑘 ∗ 2𝑛 = 𝑘<<𝑛

∀𝑘, 𝑛: : 	𝑘 ∗ 4 + 𝑛	 = s4addl(𝑘,𝑛)

Instruction semantics: defines the language

Algebraic properties: associativity of add64, memory modeling, …

17

Properties of deductive synthesizers

Efficient and provably correct
– thanks to semantics-preserving rules
– only correct programs are explored

Similar systems were built for axiomatizable domains
– expression equivalence (Denali)
– linear filters (FFTW, Spiral)
– linear algebra (FLAME)
– statistical calculations (AutoBayes)
– data structures as relational DBs (P2; Hawkins et al.)

18

Downsides of deductive optimizers

Completeness hinges on sufficient axioms
some domains hard to axiomatize (e.g., sparse matrices)

Control over the “shape” of the synthesized program
we often want predictable, human-readable programs

Solver-based Inductive synthesis achieves these
see next section

19

Superoptimization

20

Massalin’s superoptimization (1987)

Search nearly exhaustively for an optimal program.

[Alexia Henry Massalin, Superoptimizer: a look at the smallest program, ASPLOS 1987]

superoptimization

5943

The scope of superoptimization alone is limited.
Lesson: think of it as a tactical tool.

can search 1079

need to search 105943

Is superoptimization sufficient?

Synthesis with partial programs
see example of SIMD matrix transpose from previous lecture

23

Preparing your language for synthesis

24

spec: int foo (int x) {
return x + x;

}

sketch: int bar (int x) implements foo {
return x << ??;

}

result: int bar (int x) implements foo {
return x << 1;

}

Extend the language with two constructs

24

𝜙 𝑥, 𝑦 : 𝑦 = foo(𝑥)

?? substituted with an
int constant satisfying 𝜙

instead of implements, assertions over safety properties can be used

Synthesis as search over candidate programs

Partial program (sketch) defines a candidate space
we search this space for a program that satisfies 𝜙

Usually can’t search this space by enumeration
space is too large (≫ 1010)

Describe the space symbolically
solution to constraints encoded in a logical formula gives
values of holes, indirectly identifying a correct program

25

Synthesis from partial programs

spec

sketch
program-to-formula

compiler

𝜙
solver

“synthesis engine”

𝒉 ↦ 𝟏

code generator
sketch 𝑃[ℎ]

𝑃[𝟏]

CounterExample -Guided Inductive Synthesis (CEGIS)

27

Inductive Synthesizer

unrealizable

candidate implementation

add a (bounded) counterexample input

succeed

fail

fail

x1, 𝑜1 ,… , (𝑥𝑘, 𝑜𝑘)

ok

verifier/checker

Your verifier/checker goes here

compute a candidate
implementation from

concrete inputs.

Garbage Collection
Slides courtesy of Profs. Alex Aiken and George Necula

28

29

Lecture Outine

• Why Automatic Memory Management?

• Garbage Collection

• Three Techniques
– Mark and Sweep
– Stop and Copy
– Reference Counting

30

Why Automatic Memory Management?

• Storage management is still a hard problem in
modern programming

• C and C++ programs have many storage bugs
– forgetting to free unused memory
– dereferencing a dangling pointer
– overwriting parts of a data structure by accident
– and so on...

• Storage bugs are hard to find
– a bug can lead to a visible effect far away in time and

program text from the source

31

Type Safety and Memory Management

• Some storage bugs can be prevented in a strongly
typed language
– e.g., you cannot overrun the array limits

• Can types prevent errors in programs with manual
allocation and deallocation of memory?
– some fancy type systems (linear types) were designed

for this purpose but they complicate programming
significantly

• If you want type safety then you must use
automatic memory management

32

Automatic Memory Management

• This is an old problem:
– studied since the 1950s for LISP

• There are several well-known techniques for
performing completely automatic memory
management

• Until recently they were unpopular outside the Lisp
family of languages
– just like type safety used to be unpopular

33

The Basic Idea

• When an object that takes memory space is
created, unused space is automatically allocated

– In 401, new objects are created by new X

• JS memory manager keeps track of all allocated
objects and amount unused heap space

• After a while there is no more unused space
• Some space is occupied by objects that will never

be used again
• This space can be freed to be reused later

34

The Basic Idea (Cont.)

• How can we tell whether an object will “never be
used again”?
– in general it is impossible to tell
– we will have to use a heuristic to find many (not all)

objects that will never be used again

• Observation: a program can use only the objects
that it can find:
lambda f () { def a = new A() }
f()

– After f() there is no way to access the newly allocated
object

35

Garbage

• An object x is reachable if and only if:
– an interpreter frame (sym table) contains a pointer to x,

or
– another reachable object y contains a pointer to x

• You can find all reachable objects by starting from
interpreter frames and following all the pointers

• An unreachable object can never by referred by the
program
– these objects are called garbage

36

Reachability is an Approximation

• Consider the program:
x = new A() // p1
y = new B() // p2
x = y
if (alwaysTrue) { x = new A() } // p3
else { x.foo() }

• After x = y (assuming y becomes dead there)
– the object A @ p1 is not reachable anymore
– the object B @ p2 is reachable (through x)
– thus B @ p2 is not garbage and is not collected
– but object B @ p2 is never going to be used

37

A Simple Example

• We start tracing from
pointers from all
frames
– These are called roots

• C is not reachable
from any frames

• Thus we can reuse its
storage

sym value
parent

x

A

sym value
parent null

a
b 2

B

C

D

38

Elements of Garbage Collection

• Every garbage collection scheme has the following
steps

1. Allocate space as needed for new objects
2. When space runs out:

a) Compute what objects might be used again
(by tracing objects reachable from the “root”)

b) Free the space used by objects not found in (a)

• Some strategies perform garbage collection
before the space actually runs out

Algorithm 1: Mark and Sweep

39

40

Mark and Sweep

• When memory runs out, GC executes two phases
– the mark phase: traces reachable objects
– the sweep phase: collects garbage objects

• Every object has an extra bit: the mark bit
– reserved for memory management
– initially the mark bit is 0
– set to 1 for the reachable objects in the mark phase

41

The Mark Phase

def todo = { roots }
while todo ≠ ∅ {

pick v ∈ todo
todo = todo - { v }
if mark(v) == 0 { // v is unmarked yet

mark(v) = 1
v1,...,vn = pointers that v points to
todo = todo ∪ {v1,...,vn}

}
}

42

The Sweep Phase

• The sweep phase scans the heap looking for
objects with mark bit 0
– these objects have not been visited in the mark phase
– they are garbage

• Any such object is added to the free list
• The objects with a mark bit 1 have their mark bit

reset to 0

43

The Sweep Phase (Cont.)

for (obj : allocatedObjs) {
if (mark(obj) == 1) {

mark(obj) = 0
} else {

// free obj and add it back to unallocated heap
}

}

• Memory manager keeps track of each object’s size
– This can be done using types

• Memory manager typically maintains a “free list”
– Removes an entry from free list when new T is called

44

Mark and Sweep Example

A B C D Froot E

free

0 0 0 0 0 0

A B C D Froot E

free

1 0 1 0 0 1

After mark:

A B C D Froot E

free

0 0 0 0 0 0

After sweep:

45

Details

• While conceptually simple, this algorithm has a
number of tricky details
– this is typical of GC algorithms

• A serious problem with the mark phase
– it is invoked when we are out of space
– yet it needs space to construct the todo list
– the size of the todo list is unbounded so we cannot

reserve space for it a priori

46

Mark and Sweep: Details

• The todo list is used as an auxiliary data structure to
perform the reachability analysis

• There is a trick that allows the auxiliary data to be
stored in the objects themselves
– pointer reversal: when a pointer is followed it is reversed

to point to its parent

• Similarly, the free list is stored in the free objects
themselves

47

Mark and Sweep. Evaluation

• Space for a new object is allocated from the new
list
– a block large enough is picked
– an area of the necessary size is allocated from it
– the left-over is put back in the free list

• Mark and sweep can fragment the memory
• Advantage: objects are not moved during GC

– no need to update the pointers to objects
– works for languages like C and C++

Algorithm 2: Stop and copy

48

49

Stop and Copy

• Memory is organized into two areas
– old space: used for allocation
– new space: used as a reserve for GC

old space new space

heap pointer

• The heap pointer points to the next free word
in the old space
• allocation just advances the heap pointer

50

Stop and Copy Garbage Collection

• Starts when the old space is full
• Copies all reachable objects from old space into

new space
– garbage is left behind
– after the copy phase the new space uses less space than

the old one before the collection

• After the copy the roles of the old and new spaces
are reversed and the program resumes

51

Stop and Copy Garbage Collection.
Example

A B C D Froot E

Before collection:

new space

A C F

root

new space

After collection:

free

heap pointer

52

Implementation of Stop and Copy

• We need to find all the reachable objects, as for
mark and sweep

• As we find a reachable object we copy it into the
new space
– And we have to fix ALL pointers pointing to it!

• As we copy an object we store in the old copy a
forwarding pointer to the new copy
– when we later reach an object with a forwarding pointer

we know it was already copied

53

Implementation of Stop and Copy
(Cont.)

• We still have the issue of how to implement the
traversal without using extra space

• The following trick solves the problem:
– partition the new space in three contiguous regions

copied and scanned

scan

copied objects
whose pointer

fields were followed

copied objects
whose pointer

fields were NOT
followed

emptycopied

allocstart

54

Stop and Copy. Example (1)

A B C D Froot E new space

• Before garbage collection

55

Stop and Copy. Example (3)

A B C D Froot E

• Step 1: Copy the objects pointed by roots and set
forwarding pointers

A

scan

alloc

forwarding pointer

56

Stop and Copy. Example (3)

A B C D Froot E

• Step 2: Follow the pointer in the next unscanned
object (A)
– copy the pointed objects (just C in this case)
– fix the pointer in A
– set forwarding pointer

A

scan
alloc

C

57

Stop and Copy. Example (4)

A B C D Froot E

• Follow the pointer in the next unscanned object (C)
– copy the pointed objects (F in this case)

A

scan
alloc

C F

58

Stop and Copy. Example (5)

A B C D Froot E

• Follow the pointer in the next unscanned object (F)
– the pointed object (A) was already copied. Set the

pointer same as the forwading pointer

A

scan
alloc

C F

59

Stop and Copy. Example (6)

root

• Since scan caught up with alloc we are done
• Swap the role of the spaces and resume the

program

A

scan
alloc

C Fnew space

60

The Stop and Copy Algorithm
while (scan != alloc) {

O = the object at scan pointer
for (each pointer p contained in O) {

find O’ that p points to
if (O’ is without a forwarding pointer) {

copy O’ to new space (update alloc pointer)
set old O’ to point to the new copy
change p to point to the new copy of O’

} else {
set p in O equal to the forwarding pointer

}
}
increment scan pointer to the next object

}

61

Stop and Copy. Details.

• As with mark and sweep, we must be able to tell
how large is an object when we scan it
– and we must also know where are the pointers inside the

object

• We must also copy any objects pointed to by the
stack and update pointers in the stack
– this can be an expensive operation

62

Stop and Copy. Evaluation

• Stop and copy is generally believed to be the
fastest GC technique

• Allocation is very cheap
– just increment the heap pointer

• Collection is relatively cheap
– especially if there is a lot of garbage
– only touch reachable objects

• But some languages do not allow copying (C, C++)

63

Why Doesn’t C Allow Copying?

• Garbage collection relies on being able to find all
reachable objects
– and it needs to find all pointers in an object

• In C or C++ it is impossible to identify the contents
of objects in memory
– E.g., how can you tell that a sequence of two memory

words is a list cell (with data and next fields) or a binary
tree node (with a left and right fields)?

– Thus we cannot tell where all the pointers are

64

Conservative Garbage Collection

• But it is Ok to be conservative:
– if a memory word looks like a pointer it is considered a

pointer
• it must be aligned
• it must point to a valid address in the data segment

– all such pointers are followed and we overestimate the
reachable objects

• But we still cannot move objects because we
cannot update pointers to them
– what if what we thought to be a pointer is actually an

account number?

Algorithm 3: Reference Counting

65

66

Reference Counting

• Rather that wait for memory to be exhausted, try to collect
an object when there are no more pointers to it

• Store in each object the number of pointers to that object
– this is the reference count

• Each assignment operation has to manipulate the reference
count

• C++: smart pointers (boost library), memory header (C++11)
– Requires writing code to explicitly transfer object ownership

67

Implementation of Reference Counting

• new returns an object with a reference count of 1
• If x points to an object then let rc(x) point to its

reference count
• Every assignment x = y must be changed:

// increase ref count of obj pointed to by y
rc(y) = rc(y) + 1
// reduce ref count of obj pointed to previously by x
rc(x) = rc(x) – 1
if(rc(x) == 0) { mark x as free }
x = y // perform actual assignment

68

Reference Counting Evaluation

• Advantages:
– easy to implement
– collects garbage incrementally without large pauses in

the execution

• Disadvantages:
– cannot collect circular structures
– manipulating reference counts at each assignment is very

slow

69

Garbage Collection Evaluation

• Automatic memory management avoids some
serious storage bugs

• But it takes away control from the programmer
– e.g., layout of data in memory
– e.g., when is memory deallocated

• Most garbage collection implementation stop the
execution during collection
– not acceptable in real-time applications

70

Garbage Collection Evaluation

• Garbage collection is going to be around for a while
• Researchers are working on advanced garbage

collection algorithms:
– concurrent: allow the program to run while the collection

is happening
– generational: do not scan long-lived objects at every

collection
– parallel: several collectors working in parallel

