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Announcements

• HW4
– Due tonight at 11pm (no late days)

• 50-min final quiz this Thursday in section
– 2 pages of single-sided hand written notes
– practice exams on course website
– please attend your assigned section
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Outline for today

• Techniques for code generation (continued)
– Classical and solver-based techniques

• Managed runtimes
– Garbage collection
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Code optimization
(complete slides including from last lecture)
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Scope of optimizations

Scope of study for optimizations: 

• peephole: look at adjacent instructions 

• local: look at straight-line sequence of statements 

• global(intraprocedural): look at whole procedure 

• interprocedural: look across procedures 

Larger scope ⇒ better optimization, 
but more cost & complexity 



Style of optimizations

How is the program is improved

• naïve: no optimization after code generation
• rewrite rules: used in peephole optimization
• instruction selection: tree covering
• deductive: derive equivalent programs
• superoptimization and synthesis: search for 

a correct program



Naïve code generation
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Naïve code generation

For each AST node, generate a sequence of instructions.
each node code-generated individually

The same as bytecode generation (see previous lectures).
Generation of assembly code is the same but with labels.

Pros: simple
each node code-generated individually

Cons: suboptimal code
each node code-generated individually



Peephole optimization
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Peephole optimizations

Replace a sequence of adjacent instructions with 
a more optimal sequence

sw $8, 12($fp) 
lw $12, 12($fp) 

⇒

sw $8, 12($fp) 
mv $12, $8 

sub sp, 4, sp
mov r1, 0(sp) 

⇒

mov r1, -(sp) 



Instruction selection 
via tree coverage
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Better code-gen rules

Rather than translating one AST node to an instruction 
sequence, we map multiple nodes to a sequence.



Tree covering as parsing
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Deductive optimizers
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Denali: synthesis with axioms and E-graphs

∀	𝑛	. 	2𝑛 = 2∗∗𝑛

∀	𝑘,𝑛	. 	𝑘 ∗ 2𝑛 = 𝑘<<𝑛

∀𝑘, 𝑛: : 	𝑘 ∗ 4 + 𝑛	 = s4addl(𝑘,𝑛)

reg6 ∗ 4 + 1
specification

s4addl reg6,1
synthesized program

[Joshi, Nelson, Randall PLDI’02]
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Two kinds of axioms

∀	𝑛	. 	2𝑛 = 2∗∗𝑛

∀	𝑘,𝑛	. 	𝑘 ∗ 2𝑛 = 𝑘<<𝑛

∀𝑘, 𝑛: : 	𝑘 ∗ 4 + 𝑛	 = s4addl(𝑘,𝑛)

Instruction semantics: defines the language

Algebraic properties: associativity of add64, memory modeling, … 
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Properties of deductive synthesizers

Efficient and provably correct
– thanks to semantics-preserving rules 
– only correct programs are explored

Similar systems were built for axiomatizable domains
– expression equivalence (Denali)
– linear filters (FFTW, Spiral)
– linear algebra (FLAME)
– statistical calculations (AutoBayes)
– data structures as relational DBs (P2; Hawkins et al.)
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Downsides of deductive optimizers

Completeness hinges on sufficient axioms
some domains hard to axiomatize (e.g., sparse matrices)

Control over the “shape” of the synthesized program
we often want predictable, human-readable programs

Solver-based Inductive synthesis achieves these
see next section
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Superoptimization
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Massalin’s superoptimization (1987)

Search nearly exhaustively for an optimal program.

[Alexia Henry Massalin, Superoptimizer: a look at the smallest program, ASPLOS 1987]

superoptimization



5943

The scope of superoptimization alone is limited.
Lesson: think of it as a tactical tool.

can search 1079

need to search 105943

Is superoptimization sufficient?



Synthesis with partial programs
see example of SIMD matrix transpose from previous lecture
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Preparing your language for synthesis
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spec:   int foo (int x) { 
return x + x; 

} 

sketch:  int bar (int x) implements foo {
return x << ??;

} 

result:   int bar (int x) implements foo {
return x << 1;

} 

Extend the language with two constructs
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𝜙 𝑥, 𝑦 : 𝑦 = foo(𝑥)

?? substituted with an 
int constant satisfying 𝜙

instead of implements, assertions over safety properties can be used



Synthesis as search over candidate programs

Partial program (sketch) defines a candidate space
we search this space for a program that satisfies 𝜙

Usually can’t search this space by enumeration
space is too large (≫ 1010)

Describe the space symbolically
solution to constraints encoded in a logical formula gives 
values of holes, indirectly identifying a correct program
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Synthesis from partial programs

spec

sketch  
program-to-formula 

compiler

𝜙
solver

“synthesis engine”

𝒉 ↦ 𝟏

code generator
sketch 𝑃[ℎ]

𝑃[𝟏]



CounterExample -Guided Inductive Synthesis (CEGIS)
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Inductive Synthesizer

unrealizable

candidate implementation

add  a (bounded) counterexample input

succeed

fail

fail

x1, 𝑜1 ,… , (𝑥𝑘, 𝑜𝑘)

ok

verifier/checker

Your verifier/checker goes here

compute a candidate 
implementation from 

concrete inputs.



Garbage Collection
Slides courtesy of Profs. Alex Aiken and George Necula
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Lecture Outine

• Why Automatic Memory Management?

• Garbage Collection

• Three Techniques
– Mark and Sweep
– Stop and Copy
– Reference Counting
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Why Automatic Memory Management?

• Storage management is still a hard problem in 
modern programming

• C and C++ programs have many storage bugs
– forgetting to free unused memory
– dereferencing a dangling pointer
– overwriting parts of a data structure by accident
– and so on...

• Storage bugs are hard to find
– a bug can lead to a visible effect far away in time and 

program text from the source
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Type Safety and Memory Management

• Some storage bugs can be prevented in a strongly 
typed language
– e.g., you cannot overrun the array limits

• Can types prevent errors in programs with manual 
allocation and deallocation of memory?
– some fancy type systems (linear types) were designed 

for this purpose but they complicate programming 
significantly

• If you want type safety then you must use 
automatic memory management 
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Automatic Memory Management

• This is an old problem: 
– studied since the 1950s for LISP

• There are several well-known techniques for 
performing completely automatic memory 
management

• Until recently they were unpopular outside the Lisp 
family of languages
– just like type safety used to be unpopular
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The Basic Idea

• When an object that takes memory space is 
created, unused space is automatically allocated

– In 401, new objects are created by new X

• JS memory manager keeps track of all allocated 
objects and amount unused heap space

• After a while there is no more unused space
• Some space is occupied by objects that will never 

be used again
• This space can be freed to be reused later
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The Basic Idea (Cont.)

• How can we tell whether an object will “never be 
used again”?
– in general it is impossible to tell
– we will have to use a heuristic to find many (not all) 

objects that will never be used again

• Observation: a program can use only the objects 
that it can find:
lambda f () { def a = new A() } 
f()

– After f() there is no way to access the newly allocated 
object
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Garbage

• An object x is reachable if and only if:
– an interpreter frame (sym table) contains a pointer to x, 

or
– another reachable object y contains a pointer to x

• You can find all reachable objects by starting from 
interpreter frames and following all the pointers

• An unreachable object can never by referred by the 
program
– these objects are called garbage



36

Reachability is an Approximation

• Consider the program:
x = new A() // p1
y = new B() // p2
x = y       
if (alwaysTrue) { x = new A() } // p3 
else { x.foo() }

• After x = y (assuming y becomes dead there)
– the object A @ p1 is not reachable anymore
– the object B @ p2 is reachable (through x)
– thus B @ p2 is not garbage and is not collected
– but object B @ p2 is never going to be used
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A Simple Example

• We start tracing from 
pointers from all 
frames
– These are called roots

• C is not reachable 
from any frames

• Thus we can reuse its 
storage

sym value
parent 

x

A

sym value
parent null

a
b 2

B

C

D



38

Elements of Garbage Collection

• Every garbage collection scheme has the following 
steps

1. Allocate space as needed for new objects
2. When space runs out:

a) Compute what objects might be used again 
(by tracing objects reachable from the “root”)

b) Free the space used by objects not found in (a)

• Some strategies perform garbage collection 
before the space actually runs out



Algorithm 1: Mark and Sweep
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Mark and Sweep

• When memory runs out, GC executes two phases
– the mark phase: traces reachable objects
– the sweep phase: collects garbage objects

• Every object has an extra bit: the mark bit
– reserved for memory management
– initially the mark bit is 0
– set to 1 for the reachable objects in the mark phase
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The Mark Phase

def todo = { roots }
while todo ≠ ∅ {

pick v ∈ todo
todo = todo - { v }
if mark(v) == 0 {      // v is unmarked yet

mark(v) = 1
v1,...,vn = pointers that v points to
todo = todo ∪ {v1,...,vn}

}
}
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The Sweep Phase

• The sweep phase scans the heap looking for 
objects with mark bit 0
– these objects have not been visited in the mark phase
– they are garbage

• Any such object is added to the free list
• The objects with a mark bit 1 have their mark bit 

reset to 0
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The Sweep Phase (Cont.)

for (obj : allocatedObjs) {
if (mark(obj) == 1) { 

mark(obj) = 0
} else {

// free obj and add it back to unallocated heap
}

}

• Memory manager keeps track of each object’s size
– This can be done using types

• Memory manager typically maintains a “free list”
– Removes an entry from free list when new T is called
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Mark and Sweep Example

A B C D Froot E

free

0 0 0 0 0 0

A B C D Froot E

free

1 0 1 0 0 1

After mark:

A B C D Froot E

free

0 0 0 0 0 0

After sweep:
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Details

• While conceptually simple, this algorithm has a 
number of tricky details
– this is typical of GC algorithms

• A serious problem with the mark phase
– it is invoked when we are out of space
– yet it needs space to construct the todo list
– the size of the todo list is unbounded so we cannot 

reserve space for it a priori
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Mark and Sweep: Details

• The todo list is used as an auxiliary data structure to 
perform the reachability analysis

• There is a trick that allows the auxiliary data to be 
stored in the objects themselves
– pointer reversal: when a pointer is followed it is reversed 

to point to its parent

• Similarly, the free list is stored in the free objects 
themselves
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Mark and Sweep. Evaluation

• Space for a new object is allocated from the new 
list
– a block large enough is picked
– an area of the necessary size is allocated from it
– the left-over is put back in the free list

• Mark and sweep can fragment the memory 
• Advantage: objects are not moved during GC

– no need to update the pointers to objects
– works for languages like C and C++



Algorithm 2: Stop and copy
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Stop and Copy

• Memory is organized into two areas
– old space: used for allocation
– new space: used as a reserve for GC 

old space new space

heap pointer

• The heap pointer points to the next free word 
in the old space
• allocation just advances the heap pointer
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Stop and Copy Garbage Collection

• Starts when the old space is full
• Copies all reachable objects from old space into 

new space
– garbage is left behind
– after the copy phase the new space uses less space than 

the old one before the collection

• After the copy the roles of the old and new spaces 
are reversed and the program resumes
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Stop and Copy Garbage Collection. 
Example

A B C D Froot E

Before collection:

new space

A C F

root

new space

After collection:

free

heap pointer
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Implementation of Stop and Copy

• We need to find all the reachable objects, as for 
mark and sweep

• As we find a reachable object we copy it into the 
new space
– And we have to fix ALL pointers pointing to it!

• As we copy an object we store in the old copy a 
forwarding pointer to the new copy
– when we later reach an object with a forwarding pointer 

we know it was already copied
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Implementation of Stop and Copy 
(Cont.)

• We still have the issue of how to implement the 
traversal without using extra space

• The following trick solves the problem:
– partition the new space in three contiguous regions

copied and scanned

scan

copied objects 
whose pointer

fields were followed

copied objects 
whose pointer 

fields were NOT
followed

emptycopied

allocstart
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Stop and Copy. Example (1)

A B C D Froot E new space

• Before garbage collection
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Stop and Copy. Example (3)

A B C D Froot E

• Step 1: Copy the objects pointed by roots and set 
forwarding pointers

A

scan

alloc

forwarding pointer
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Stop and Copy. Example (3)

A B C D Froot E

• Step 2: Follow the pointer in the next unscanned 
object (A)
– copy the pointed objects (just C in this case)
– fix the pointer in A 
– set forwarding pointer

A

scan
alloc

C
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Stop and Copy. Example (4)

A B C D Froot E

• Follow the pointer in the next unscanned object (C)
– copy the pointed objects (F in this case)

A

scan
alloc

C F
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Stop and Copy. Example (5)

A B C D Froot E

• Follow the pointer in the next unscanned object (F)
– the pointed object (A) was already copied. Set the 

pointer same as the forwading pointer

A

scan
alloc

C F
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Stop and Copy. Example (6)

root

• Since scan caught up with alloc we are done
• Swap the role of the spaces and resume the 

program

A

scan
alloc

C Fnew space



60

The Stop and Copy Algorithm
while (scan != alloc) {

O = the object at scan pointer
for (each pointer p contained in O) {

find O’ that p points to 
if (O’ is without a forwarding pointer) {

copy O’ to new space (update alloc pointer)
set old O’ to point to the new copy
change p to point to the new copy of O’

} else {
set p in O equal to the forwarding pointer 

}
}
increment scan pointer to the next object

}
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Stop and Copy. Details.

• As with mark and sweep, we must be able to tell 
how large is an object when we scan it
– and we must also know where are the pointers inside the 

object

• We must also copy any objects pointed to by the 
stack and update pointers in the stack
– this can be an expensive operation
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Stop and Copy. Evaluation

• Stop and copy is generally believed to be the 
fastest GC technique

• Allocation is very cheap
– just increment the heap pointer

• Collection is relatively cheap
– especially if there is a lot of garbage
– only touch reachable objects

• But some languages do not allow copying (C, C++)
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Why Doesn’t C Allow Copying?

• Garbage collection relies on being able to find all 
reachable objects
– and it needs to find all pointers in an object

• In C or C++ it is impossible to identify the contents 
of objects in memory
– E.g., how can you tell that a sequence of two memory 

words is a list cell (with data and next fields) or a binary 
tree node (with a left and right fields)?

– Thus we cannot tell where all the pointers are
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Conservative Garbage Collection

• But it is Ok to be conservative:
– if a memory word looks like a pointer it is considered a 

pointer
• it must be aligned
• it must point to a valid address in the data segment

– all such pointers are followed and we overestimate the 
reachable objects

• But we still cannot move objects because we 
cannot update pointers to them
– what if what we thought to be a pointer is actually an 

account number?



Algorithm 3: Reference Counting
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Reference Counting

• Rather that wait for memory to be exhausted, try to collect 
an object when there are no more pointers to it

• Store in each object the number of pointers to that object
– this is the reference count

• Each assignment operation has to manipulate the reference 
count

• C++: smart pointers (boost library), memory header (C++11)
– Requires writing code to explicitly transfer object ownership
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Implementation of Reference Counting

• new returns an object with a reference count of 1
• If x points to an object then let rc(x) point to its 

reference count
• Every assignment x = y must be changed:

// increase ref count of obj pointed to by y 
rc(y) = rc(y) + 1 
// reduce ref count of obj pointed to previously by x
rc(x) = rc(x) – 1
if(rc(x) == 0) { mark x as free }
x = y   // perform actual assignment
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Reference Counting Evaluation

• Advantages:
– easy to implement
– collects garbage incrementally without large pauses in 

the execution

• Disadvantages:
– cannot collect circular structures
– manipulating reference counts at each assignment is very 

slow
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Garbage Collection Evaluation

• Automatic memory management avoids some 
serious storage bugs

• But it takes away control from the programmer
– e.g., layout of data in memory
– e.g., when is memory deallocated

• Most garbage collection implementation stop the 
execution during collection
– not acceptable in real-time applications



70

Garbage Collection Evaluation

• Garbage collection is going to be around for a while
• Researchers are working on advanced garbage 

collection algorithms:
– concurrent: allow the program to run while the collection 

is happening
– generational: do not scan long-lived objects at every 

collection
– parallel: several collectors working in parallel


