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Announcements

Milestones. Do these today, if you haven’t already:
– Contact the team that is reviewing  your project
– Sign up for team meetings this week (see Piazza note)

HW4
– Last HW (we promise!)
– Help you prepare for the quiz
– Due this Sunday 11pm (no late days)
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Announcements

Final quiz will be next Thursday during sections
– Make sure you attend!  J
– Quiz to check if you have been attending class
– 2 pages of hand written notes (one-sided)
– Comprehensive, but mostly after-midterm stuff
– Sample exams have been posted on websitE
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Class evaluations

Thanks for working with Jim and staying after class!

Got lots of good feedback:
– Clarify specs while keeping the assignments open-ended
– Timing for makeup lectures

Will incorporate them in future versions of 401
– Looking for TAs interested in improving the courseware
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Outline for today

Motivation for constraints compilation

Solver as interpreter

Compiling 401CP to constraints
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Motivation: Applications of 
Compiling to Constraint Solvers
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Motivation

Imagine you could execute program 𝑃 backwards
Given an output 𝑦, compute an input 𝑥 such that 𝑦 = 𝑃(𝑥).

You could do three exciting applications
Bug finding: find an input that fails an assertion

Oracle execution: find an input that satisfies all assertions

Program synthesis: complete of a program with holes
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Finding bugs and security vulnerabilities 

Input that fail the assertion exposes the bug.

def main(x) {
…
assert(c!=0)   // division-by-zero error
a = b/c

}

Modeling assertions as program outputs:
i) Introduce the global variable  def retval = true
ii) Rewrite assert(E) to retval = retval && E
iii) Make the main function return retval 8



Other applications of bug finding 

Check equivalence of two programs.  That is, do two 
programs produce the same values on all inputs?

We’ll use this to generate optimal code in a few slides
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Oracle execution

Input passing all assertions solves the 8-queen puzzle:

def eight_queen(q1,q2,q3,q4,q5,q6,q7,q8) {
assert(q1!=q2)     // q1, q2 not in same row
assert(q1!=q2+1)   // q1, q2 not in same diagonal
assert(q1+1 != q2) // q1, q2 not in same diagonal
…

}
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Other applications of oracle execution

Given a buggy execution, find a value for a variable x 
that rescues the execution (avoids the failure).

The value can be a hint on how to fix the bug.
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Synthesize a parallel 4x4-matrix transpose

a functional (executable) specification:

int[16] transpose(int[16] M) {
int[16] T = 0;
for (int i = 0; i < 4; i++)
for (int j = 0; j < 4; j++)
T[4 * i + j] = M[4 * j + i];

return T;
}

This example comes from a synthesis contest
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Implementation idea: parallelize with SIMD

Intel SHUFP (shuffle parallel scalars) SIMD instruction:

return = shufps(x1, x2, imm8 :: bitvector8)

13

x1 x2

return
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imm8[0::2]

Notes: two bits decide which element is chosen for each return vector slot. 
Expression x[a::b] selects b elements starting at index a.

imm8[2::2]



High-level insight of the algorithm designer

Matrix 𝑀 transposed in two shuffle phases

Phase 1: shuffle 𝑀 into an intermediate matrix 𝑆 with some 
number of shufps instructions

Phase 2: shuffle 𝑆 into an result matrix 𝑇 with some number 
of shufps instructions

Synthesis with partial programs helps one to 
complete their insight.  Or prove it wrong.
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The SIMD matrix transpose, sketched

int[16] trans_sse(int[16] M) implements trans {
int[16] S = 0, T = 0;

S[??::4] = shufps(M[??::4], M[??::4], ??);
S[??::4] = shufps(M[??::4], M[??::4], ??);
… 
S[??::4] = shufps(M[??::4], M[??::4], ??);

T[??::4] = shufps(S[??::4], S[??::4], ??);
T[??::4] = shufps(S[??::4], S[??::4], ??);
…
T[??::4] = shufps(S[??::4], S[??::4], ??);

return T;
}
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The SIMD matrix transpose, sketched

int[16] trans_sse(int[16] M) implements trans {
int[16] S = 0, T = 0;
repeat (??) S[??::4] = shufps(M[??::4], M[??::4], ??);
repeat (??) T[??::4] = shufps(S[??::4], S[??::4], ??);
return T;

}
int[16] trans_sse(int[16] M) implements trans { // synthesized code
S[4::4]   = shufps(M[6::4],   M[2::4],  11001000b);
S[0::4]   = shufps(M[11::4],  M[6::4],  10010110b);
S[12::4]  = shufps(M[0::4],   M[2::4],  10001101b);
S[8::4]   = shufps(M[8::4],   M[12::4], 11010111b);
T[4::4]   = shufps(S[11::4],  S[1::4],  10111100b);
T[12::4]  = shufps(S[3::4],   S[8::4],  11000011b);
T[8::4]   = shufps(S[4::4],   S[9::4],  11100010b);
T[0::4]   = shufps(S[12::4],  S[0::4],  10110100b);

}
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From the contestant email: 
Over the summer, I spent about 1/2 
a day manually figuring it out.  

Synthesis time: <5 minutes.



Key ideas

Many programming questions can be reduced to the 
question “is there an input 𝑥 such that 𝑃(𝑥) = 𝑦?”

Sadly, these questions are in general undecidable. 
no algorithm exists

We’ll sidestep this in one of two ways: 
1) Restrict what programs we consider (eg, no loops)
2) Restrict what inputs that we consider (eg 4-bit ints)
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Reducing Programming Questions 
to Constraint Solving

overview of technical ideas



Program as a logical formula

Formula SP(x,y) holds iff program P(x) outputs value y

program: f(x) { return x + x }

formula: 𝑆𝑓 𝑥, 𝑦 : 	𝑦 = 𝑥 + 𝑥

We introduced variable 𝑦 to represent f’s return value
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With program as a formula, solver is versatile

Solver as an interpreter: given x, evaluate f(x)

𝑆 𝑥, 𝑦 ∧ 𝑥 = 3													solve	for	𝑦									𝒚 ↦ 𝟔

Solver as a program inverter: given f(x), find x

𝑆 𝑥, 𝑦 ∧ 𝑦 = 6												solve	for	𝑥											𝒙 ↦ 𝟑

Possible because constraints are non-directional
unlike assignments
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Synthesis as constraint solving 

𝑆𝑃(𝑥, ℎ, 𝑦)	holds iff sketch 𝑃[ℎ](𝑥)	outputs	𝑦.
spec(x) { return x + x }

sketch(x) { return x << ?? }
sketch(x,h) { return x << h } 		𝑆𝑠𝑘𝑒𝑡𝑐ℎ 𝑥, 𝑦, ℎ : 	𝑦 = 𝑥 ∗ 2ℎ

The solver computes h, thus synthesizing a program 
correct for the given x (here, x=2)

𝑆𝑠𝑘𝑒𝑡𝑐ℎ 𝑥, 𝑦, ℎ ∧ 𝑥 = 2 ∧ 𝑦 = 4										solve	for	ℎ					𝒉	 ↦ 𝟏

Sometimes h must be constrained on several inputs
𝑆 𝑥1, 𝑦1, ℎ ∧ 𝑥1 = 0 ∧ 𝑦1 = 0 ∧																																											
𝑆 𝑥2, 𝑦2, ℎ ∧ 𝑥2 = 3 ∧ 𝑦2 = 6								solve	for	ℎ							𝒉 ↦ 𝟏
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Inductive synthesis

Our constraints encode inductive synthesis:
We ask for a program 𝑃 correct on a few inputs.
We hope (or test, verify) that 𝑃 is correct on rest of inputs. 

How to select suitable inputs?
Verify a candidate program. If it fails verification, the 
counterexample (input) is added as an input to synthesis
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Key ideas

Programs as non-directional formulas (constraints).

Solver solves constraints, acting as a forward and 
backward interpreter.
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The language of constraints
this is our target language
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Constraint solver

Given a set of constraints, the solver 
i. finds a solution (often one of many)  or 
ii. proves that there’s no solution or
iii. runs out of memory or times out  L

We’ll be using a SAT solver 
– it solves the SAT problem (satisfiability of Bool formulas)
– amazingly efficient algorithms now exist
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Language of constraints

The language of constraints is our target language
that is, we compile programs to this language

This language is idiosyncratic (like JS and cps J )
so we’ll need a special compilation strategy 

This is what we explain on the next few slides

We’ll also build an abstraction layer (circuits) over the 
low-level SAT constraints
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SAT solver

Input is a formula in CNF (conjunctive normal form). 
Output is UNSAT or SAT + solution. 
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SAT solver

(x1∨ ¬x2) ∧ (¬x1∨ x2∨ x3) ∧ ¬x1

UNSAT SAT  
Solution x1 =  , x2 =  , x3 =  



Constraints as circuits

It is sometimes easier to think of boolean constraints 
as circuits (these can be translated to CNF).   
Circuit = each value is computed exactly once.
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Limitations of boolean circuit constraints

Each variable is computed once (“single assignment”)
we can’t reassign constraint variables
==> 
need multiple constraint variables per program variable 

There are no loops 
no recursion either 
==> 
need to unroll loops and recursion into circuit form

Bounded unrolling means we can’t execute arbitrary inputs
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Turning a program into a circuit

W=4
int pop (bit[W] x) {

int count = 0; 
for(int i=0; i<W; i++)

if (x[i]) 
count++;

return count;
}

x count 0 0 0 0 one 0 0 0 1

+

mux

count

+

count

mux

+

count

+

count

mux

mux

𝑆𝑝𝑜𝑝(𝑥) 	=



Summary

• Compiling to constraints offer a number of benefits
• Constraint programming differs from imperative 

code
– Programs are non-directional
– All variables get one single value
– No loops, assignments, and recursions

• Constraint programs are represented using circuits
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