
1

Lecture 16: Compilation to Constraints

Motivation for constraints-based reasoning
Compilation to constraints

Ras Bodik
Alvin Cheung
Maaz Ahmad

Talia Ringer
Ben Tebbs

Hack Your Language!
CSE401 Winter 2016
Introduction to Compiler Construction

Announcements

Milestones. Do these today, if you haven’t already:
– Contact the team that is reviewing your project
– Sign up for team meetings this week (see Piazza note)

HW4
– Last HW (we promise!)
– Help you prepare for the quiz
– Due this Sunday 11pm (no late days)

2

Announcements

Final quiz will be next Thursday during sections
– Make sure you attend! J
– Quiz to check if you have been attending class
– 2 pages of hand written notes (one-sided)
– Comprehensive, but mostly after-midterm stuff
– Sample exams have been posted on websitE

3

Class evaluations

Thanks for working with Jim and staying after class!

Got lots of good feedback:
– Clarify specs while keeping the assignments open-ended
– Timing for makeup lectures

Will incorporate them in future versions of 401
– Looking for TAs interested in improving the courseware

4

Outline for today

Motivation for constraints compilation

Solver as interpreter

Compiling 401CP to constraints

5

Motivation: Applications of
Compiling to Constraint Solvers

6

Motivation

Imagine you could execute program 𝑃 backwards
Given an output 𝑦, compute an input 𝑥 such that 𝑦 = 𝑃(𝑥).

You could do three exciting applications
Bug finding: find an input that fails an assertion

Oracle execution: find an input that satisfies all assertions

Program synthesis: complete of a program with holes

7

Finding bugs and security vulnerabilities

Input that fail the assertion exposes the bug.

def main(x) {
…
assert(c!=0) // division-by-zero error
a = b/c

}

Modeling assertions as program outputs:
i) Introduce the global variable def retval = true
ii) Rewrite assert(E) to retval = retval && E
iii) Make the main function return retval 8

Other applications of bug finding

Check equivalence of two programs. That is, do two
programs produce the same values on all inputs?

We’ll use this to generate optimal code in a few slides

9

Oracle execution

Input passing all assertions solves the 8-queen puzzle:

def eight_queen(q1,q2,q3,q4,q5,q6,q7,q8) {
assert(q1!=q2) // q1, q2 not in same row
assert(q1!=q2+1) // q1, q2 not in same diagonal
assert(q1+1 != q2) // q1, q2 not in same diagonal
…

}

10

Other applications of oracle execution

Given a buggy execution, find a value for a variable x
that rescues the execution (avoids the failure).

The value can be a hint on how to fix the bug.

11

Synthesize a parallel 4x4-matrix transpose

a functional (executable) specification:

int[16] transpose(int[16] M) {
int[16] T = 0;
for (int i = 0; i < 4; i++)
for (int j = 0; j < 4; j++)
T[4 * i + j] = M[4 * j + i];

return T;
}

This example comes from a synthesis contest

1212

Implementation idea: parallelize with SIMD

Intel SHUFP (shuffle parallel scalars) SIMD instruction:

return = shufps(x1, x2, imm8 :: bitvector8)

13

x1 x2

return

13

imm8[0::2]

Notes: two bits decide which element is chosen for each return vector slot.
Expression x[a::b] selects b elements starting at index a.

imm8[2::2]

High-level insight of the algorithm designer

Matrix 𝑀 transposed in two shuffle phases

Phase 1: shuffle 𝑀 into an intermediate matrix 𝑆 with some
number of shufps instructions

Phase 2: shuffle 𝑆 into an result matrix 𝑇 with some number
of shufps instructions

Synthesis with partial programs helps one to
complete their insight. Or prove it wrong.

14

The SIMD matrix transpose, sketched

int[16] trans_sse(int[16] M) implements trans {
int[16] S = 0, T = 0;

S[??::4] = shufps(M[??::4], M[??::4], ??);
S[??::4] = shufps(M[??::4], M[??::4], ??);
…
S[??::4] = shufps(M[??::4], M[??::4], ??);

T[??::4] = shufps(S[??::4], S[??::4], ??);
T[??::4] = shufps(S[??::4], S[??::4], ??);
…
T[??::4] = shufps(S[??::4], S[??::4], ??);

return T;
}

15

Phase 1

Phase 2

The SIMD matrix transpose, sketched

int[16] trans_sse(int[16] M) implements trans {
int[16] S = 0, T = 0;
repeat (??) S[??::4] = shufps(M[??::4], M[??::4], ??);
repeat (??) T[??::4] = shufps(S[??::4], S[??::4], ??);
return T;

}
int[16] trans_sse(int[16] M) implements trans { // synthesized code
S[4::4] = shufps(M[6::4], M[2::4], 11001000b);
S[0::4] = shufps(M[11::4], M[6::4], 10010110b);
S[12::4] = shufps(M[0::4], M[2::4], 10001101b);
S[8::4] = shufps(M[8::4], M[12::4], 11010111b);
T[4::4] = shufps(S[11::4], S[1::4], 10111100b);
T[12::4] = shufps(S[3::4], S[8::4], 11000011b);
T[8::4] = shufps(S[4::4], S[9::4], 11100010b);
T[0::4] = shufps(S[12::4], S[0::4], 10110100b);

}
16

From the contestant email:
Over the summer, I spent about 1/2
a day manually figuring it out.

Synthesis time: <5 minutes.

Key ideas

Many programming questions can be reduced to the
question “is there an input 𝑥 such that 𝑃(𝑥) = 𝑦?”

Sadly, these questions are in general undecidable.
no algorithm exists

We’ll sidestep this in one of two ways:
1) Restrict what programs we consider (eg, no loops)
2) Restrict what inputs that we consider (eg 4-bit ints)

17

Reducing Programming Questions
to Constraint Solving

overview of technical ideas

Program as a logical formula

Formula SP(x,y) holds iff program P(x) outputs value y

program: f(x) { return x + x }

formula: 𝑆𝑓 𝑥, 𝑦 : 	𝑦 = 𝑥 + 𝑥

We introduced variable 𝑦 to represent f’s return value

19

With program as a formula, solver is versatile

Solver as an interpreter: given x, evaluate f(x)

𝑆 𝑥, 𝑦 ∧ 𝑥 = 3													solve	for	𝑦									𝒚 ↦ 𝟔

Solver as a program inverter: given f(x), find x

𝑆 𝑥, 𝑦 ∧ 𝑦 = 6												solve	for	𝑥											𝒙 ↦ 𝟑

Possible because constraints are non-directional
unlike assignments

20

Synthesis as constraint solving

𝑆𝑃(𝑥, ℎ, 𝑦)	holds iff sketch 𝑃[ℎ](𝑥)	outputs	𝑦.
spec(x) { return x + x }

sketch(x) { return x << ?? }
sketch(x,h) { return x << h } 		𝑆𝑠𝑘𝑒𝑡𝑐ℎ 𝑥, 𝑦, ℎ : 	𝑦 = 𝑥 ∗ 2ℎ

The solver computes h, thus synthesizing a program
correct for the given x (here, x=2)

𝑆𝑠𝑘𝑒𝑡𝑐ℎ 𝑥, 𝑦, ℎ ∧ 𝑥 = 2 ∧ 𝑦 = 4										solve	for	ℎ					𝒉	 ↦ 𝟏

Sometimes h must be constrained on several inputs
𝑆 𝑥1, 𝑦1, ℎ ∧ 𝑥1 = 0 ∧ 𝑦1 = 0 ∧																																											
𝑆 𝑥2, 𝑦2, ℎ ∧ 𝑥2 = 3 ∧ 𝑦2 = 6								solve	for	ℎ							𝒉 ↦ 𝟏

21

Inductive synthesis

Our constraints encode inductive synthesis:
We ask for a program 𝑃 correct on a few inputs.
We hope (or test, verify) that 𝑃 is correct on rest of inputs.

How to select suitable inputs?
Verify a candidate program. If it fails verification, the
counterexample (input) is added as an input to synthesis

22

Key ideas

Programs as non-directional formulas (constraints).

Solver solves constraints, acting as a forward and
backward interpreter.

23

The language of constraints
this is our target language

24

Constraint solver

Given a set of constraints, the solver
i. finds a solution (often one of many) or
ii. proves that there’s no solution or
iii. runs out of memory or times out L

We’ll be using a SAT solver
– it solves the SAT problem (satisfiability of Bool formulas)
– amazingly efficient algorithms now exist

25

Language of constraints

The language of constraints is our target language
that is, we compile programs to this language

This language is idiosyncratic (like JS and cps J)
so we’ll need a special compilation strategy

This is what we explain on the next few slides

We’ll also build an abstraction layer (circuits) over the
low-level SAT constraints

26

SAT solver

Input is a formula in CNF (conjunctive normal form).
Output is UNSAT or SAT + solution.

27

SAT solver

(x1∨ ¬x2) ∧ (¬x1∨ x2∨ x3) ∧ ¬x1

UNSAT SAT
Solution x1 = , x2 = , x3 =

Constraints as circuits

It is sometimes easier to think of boolean constraints
as circuits (these can be translated to CNF).
Circuit = each value is computed exactly once.

28

a:int16 b:int16 c:int32 d:int32

+ &

<<

-

e:int32

out:int32

f:int16
g:int32

h:int32

Limitations of boolean circuit constraints

Each variable is computed once (“single assignment”)
we can’t reassign constraint variables
==>
need multiple constraint variables per program variable

There are no loops
no recursion either
==>
need to unroll loops and recursion into circuit form

Bounded unrolling means we can’t execute arbitrary inputs

29

Turning a program into a circuit

W=4
int pop (bit[W] x) {

int count = 0;
for(int i=0; i<W; i++)

if (x[i])
count++;

return count;
}

x count 0 0 0 0 one 0 0 0 1

+

mux

count

+

count

mux

+

count

+

count

mux

mux

𝑆𝑝𝑜𝑝(𝑥) 	=

Summary

• Compiling to constraints offer a number of benefits
• Constraint programming differs from imperative

code
– Programs are non-directional
– All variables get one single value
– No loops, assignments, and recursions

• Constraint programs are represented using circuits

31

