
1

Lecture 14: Static analysis

Dataflow analysis
Pointer analysis

Ras Bodik
Alvin Cheung
Maaz Ahmad

Talia Ringer
Ben Tebbs

Hack Your Language!
CSE401 Winter 2016
Introduction to Compiler Construction

Where are we in the course

Last lecture was on static types

programmer annotates expressions, variables, …with
information about their runtime types

Type checker checks these annotations

after all, the programmer could make a mistake;

part of the checks done at runtime (dynamic checks)

Performance: Compilers can use these annotations

generate faster code and smaller object representations

Correctness: static types ensure absence of errors

certain kinds of error can’t happen,
hence software is more secure

2

Today: properties can be inferred!

Static program analysis

what is it and why do it

Dataflow analysis

and partial redundancy elimination

Points-to analysis

static analysis for understanding how pointer values flow

Andersen’s algorithm for points-to analysis

via deduction

Andersen’s algorithm via CYK parsing (optional mat.)

CYK parsing on a graph == CFL-reachability

Static program analysis

Answers questions about program properties

– related to static type inference, which infers types

Static analysis == at compile time

– that is, prior to seeing the actual input

– hence, the answer must be correct for all possible inputs

Sample program properties:

Does var x have a constant value (for all inputs)?

Does foo() return a table (whenever called, on all inputs)?

4

Motivation for static program analysis (1)

Optimize the program.

Ex: replace x[i-1] with x[1] if we know that i is always 2.

Constant propagation

i = 0

…

i = i+2

…

if (…) { … }

…

x[i] = x[i-1]

5

Motivation for static program analysis (1)

Optimize the program.

Ex: replace x[i-1] with x[1] if we know that i is always 1.

Constant propagation

i = 0

…

i = i+2

…

if (…) { …}

…

x[i] = x[i-1]

6

Motivation for static analysis (2)

Find potential security vulnerabilities

Ex: in a server program, can a value flow from POST
(untrusted, tainted source) to SQL interpreter (trusted sink)
without passing through cgi.escape (a sanitizer)?

This is taint analysis. Can be dynamically or static.

Dynamic: mark values with a tainted bit. Sanitization clears
the bit. An assertion checks that tainted values do not
reach the interpreter. http://www.pythonsecurity.org/wiki/taintmode/

Static: a compile-time variant of this analysis. Proves that
no input can ever make a tainted value flow to trusted sink.

7

http://www.pythonsecurity.org/wiki/taintmode/

Static analysis must be conservative

When unsure, the analysis must answer such that it
does not mislead the client of the analysis.

Err on the side of caution. Say, never optimize the program
such that it outputs a different value.

Several ways an analysis can be unsure:

Property holds on some but not all execution paths.

Property holds on some but not all inputs.

8

Misleading the client:

Constant propagation:

if x is not always a constant but is claimed to be so by the
analysis to the client (the optimizer), this would lead to
optimization that changes the semantics of the program.
The optimizer broke the program.

Taintedness analysis:

Saying that a tainted value cannot flow may lead to missing
a bug by the security engineer during program review. Yes,
we want find to find all taintedness bugs, even if the
analysis reports many false positives (i.e., many warnings
are not bugs).

9

Data flow analysis

10

Common subexpression elimination

11

w := x + y

z := x + y

w := $1

z := x + y

$1 := z

optimization

When is CSE legal to perform?

12

w := x + y

z := x + y

w := $1

z := x + y

$1 := z

r := x + y r := x + y

$1 := r

The graph is a control-flow graph (CFG).

Replacing x+y with $1 is legal

if x+y is computed on all

incoming control flow paths.

We say x+y is available.

Data flow analysis computes program facts

13

w := x + y

z := x + y r := x + y

The computation of x+y “generates”

the availability of x+y.

x+y is available along all incoming

paths, and hence it is available

before x+y is recomputed

x+y is not available when the program starts

Data flow analysis

14

w := x + y

z := x + y r := x + y

x := …

Reassigning x “kills” the availability of x+y

x+y is not available along all

incoming paths, and hence it is not

available when x+y is recomputed

GEN statements generate facts. KILL statements remove them.

Rules for computing availability of x+y (1)

15

z := x+y x := w := start

Create 𝑑𝑖
𝑖𝑛 and 𝑑𝑖

𝑜𝑢𝑡 to denote availability of x+y at

the entry/exit of statement i

𝑑𝑖
𝑜𝑢𝑡

𝑑𝑖
𝑖𝑛

𝑑𝑖
𝑜𝑢𝑡 ← 𝑡 𝑑𝑖

𝑜𝑢𝑡 ← 𝑓 𝑑𝑖
𝑜𝑢𝑡 ← 𝑑𝑖

𝑖𝑛 𝑑𝑖
𝑜𝑢𝑡 ← 𝑓

These are so-called transfer functions. The show how dataflow facts
transfer across statements. The first is a GEN statement. The second is a KILL.

Rules for computing availability of x+y (2)

16

𝑖 𝑗

𝑘

𝑑𝑖
𝑜𝑢𝑡

𝑑𝑗
𝑜𝑢𝑡

𝑑𝑘
𝑖𝑛

𝑚
𝑑𝑘
𝑖𝑛 ← 𝑑𝑖

𝑜𝑢𝑡 ∧ 𝑑𝑗
𝑜𝑢𝑡

𝑑𝑚
𝑖𝑛 ← 𝑑𝑗

𝑜𝑢𝑡

𝑑𝑚
𝑖𝑛

This is so-called control-flow merge function. We use AND to ascertain that
the property holds along all incoming paths.

Computing a solution to the constraints

Iterative algorithm:

1) Initialize all 𝑑 values to 𝑡.

2) Pick any rule (e.g., 𝑑𝑘
𝑖𝑛 ← 𝑑𝑖

𝑜𝑢𝑡 ∧ 𝑑𝑗
𝑜𝑢𝑡) and apply it.

3) Go to 2, stopping when no rule can change the value of
any 𝑑.

The final solution is a fixed point,
i.e., all constraints are satisfied.

Since we initialized the values to 𝑡, the solution is the best
fixed point, i.e. the most accurate solution.
The next two slides show why initializing to 𝑓 yields a less
accurate solution.

17

Example

18

z := x + y r := x + y

w := …

w := x + y

z := x + y r := x + y

w := …

w := x + y

Flow analysis (of pointers)

19

Flow analysis (1): virtual call optimization

Optimization of virtual calls in Java:

virtual calls are costly, due to method dispatch

Idea:

Determine the target function of the call statically.

If we can prove that the call has a single target, it is safe to
rewrite the virtual call so that it calls the target directly.

How to analyze whether a call has this property?

1. Based on declared (static) types of pointer variables:
Foo a = …; a.f() // a could call Foo::f or Bar::f. Cant’ tell from def of a

2. By analyzing what values flow to a=….
That is, we try to compute the dynamic type of a more precisely
than is given by the definition “Foo a”. 19

Example

class A { void foo() {…} }

class B extends A { void foo() {…} }

void bar(A a) { a.foo() } // can we optimize this call?

B myB = new B();

A myA = myB;

bar(myA);

Declared type of a permits a.foo() to call both A::foo and B::foo.

Yet we know only B::foo is the target, which allows optimization.

What program property would reveal that the optimization is possible?

21

Flow analysis (2): Verification of casts

In Java, casts are checked at run time

– type system not expressive enough to check them statically

– although Java generics help somewhat

The anatomy of a cast check: (Foo) e translates to

– if (dynamic_type_of(e) not compatible with Foo)

throw ClassCast Exception

– t1 compatible with t2: t1 = t2 or t1 subclass of t2

Goal: prove that no exception will happen at runtime

– Why do this? The exception prevents any security holes, no?

– Such static verification useful to catch bugs (Mars Rover).

22

Example

class SimpleContainer { Object a;

void put (Object o) { a=o; }

Object get() { return a; } }

SimpleContainer c1 = new SimpleContainer();

SimpleContainer c2 = new SimpleContainer();

c1.put(new Foo()); c2.put(“Hello”);

Foo myFoo = (Foo) c1.get(); // verify that cast does not fail

Note: analysis must distinguish containers c1 and c2.

– otherwise c1 will appear to contain string objects

What property will lead to desired verification?
23

What analysis that can serve these clients?

Is there a program property useful to these clients?

Yes.

We want to understand how references “flow”

References (pointer values): how are they copied from
variable to variable?

Flow from creation of an object to its uses

that is, flow from new Foo to myFoo.f

Difference from dataflow analysis: pointer values may
flow via the heap

– that is, a pointer may be stored in an object’s field

– ... and later read from this field

24

Common Analysis

The flow analysis can be explained in terms of

– producers (creators of pointer values: new Foo)

– consumers (uses of the pointer value, e.g., a call p.f())

Client virtual call optimization

For a given call p.f() we ask which expressions new T()
produced the values that may flow to p.

we are actually interested in which values may not flow

Knowing producers will tells us possible dynamic types of p.

… and thus also the set of target methods
and thus also the set of target methods which may not be called

25

Continued..

Client cast verification

Producers are new T

Consumers are cast expressions (Type) p.

Question: are casts also producers?

Yes, The cast generates new information! After the cast (T)
p we know that the value in p is of type T or compatible with
T. Otherwise the program would crash.

p = f() // assume f is declared to return Foo

t = (Bar) p // assume that Bar extends Foo

// we know that t must be of type Bar here.

26

Assume Java

For now, assume we’re analyzing Java

– thanks to class defs, fields of objects are known statically

– (also, assume the Java program does not use reflection)

27

Flow analysis as a constant propagation

Initially we’ll only handle new and assignments p=r:

if (…) p = new T1()

else p = new T2()

r = p

r.f() // what are possible dynamic types of r?

28

Flow analysis as a constant propagation

We (conceptually) translate the program to

if (…) p = o1
else p = o2
r = p

r.f() // what are possible symbolic constant values r?

29

Abstract objects

The oi constants are called abstract objects

– an abstract object oi stands for any and all dynamic
objects allocated at the allocation site with number i

– allocation site = a new expression

– each new expression is given a number i

When the analysis says a variable p may have value o7

– we know that p may point to any object allocated in the
expression “new7 Foo”

30

We now consider pointer dereferences

x = new Obj(); // o1
z = new Obj(); // o2
w = x;

y = x;

y.f = z;

v = w.f;

To determine abstract objects that v reference, what
new question do we need to answer?

Can y and w point to same object?

31

Keeping track of the heap state

Heap state: what objects a variable may point to at a
particular program point.

Heap state may change at each statement

Analyses often don’t track state at each point separately

– to save space, they collapse all program points into one

– consequently, they keep a single heap state

This is called flow-insensitive analysis

why? see next slide

32

Flow-Insensitive Analysis

Disregards the control flow of the program

– assumes that statements can execute in any order …

– … and any number of times

Effectively, flow-insensitive analysis transforms this

if (…) p = new T1(); else p = new T2();

r = p; p = r.f;

into this control flow graph:

33

p = new T1()

p = new T2()p = r.f

r = p

Flow-Insensitive Analysis

Motivation:

– there is a single program point,

– and hence a single “version” of program state

Is flow-insensitive analysis sound?

– yes: each execution of the original program is preserved

– and thus will be analyzed and its effects reflected

But it may be imprecise

1) it adds executions not present in the original program

2) it does not distinguish value of p at distinct pgm points

34

Let’s develop the analysis! Canonical Stmts

Java pointers give rise to complex expressions:

– ex: p.f().g.arr[i] = r.f.g(new Foo()).h

Can we find a small set of canonical statements

– i.e., the core language understood by the analysis

– we’ll desugar the rest of the program to these stmts

We only need four canonical statements:

p = new T() new

p = r assign

p = r.f getfield

p.f = r putfield

35

Canonical Statements, discussion

Complex statements can be canonized

p.f.g = r.f

→

t1 = p.f

t2 = r.f

t1.g = t2

Can be done with a syntax-directed translation

like translation to byte code in PA2

36

Andersen’s Algorithm

For flow-insensitive flow analysis:

Goal: compute two binary relations of interest:

x pointsTo o: holds when x may point to abstract object o

o flowsTo x: holds when abstract object o may flow to x

These relations are inverses of each other

x pointsTo o ⇔ o flowsTo x

37

These two relations support our clients

These relations allows determining:

1. target methods of virtual calls

2. verification of casts

3. where objects are used

For 1) and 2) we need the x pointsTo o relation

For 3) we need the o flowsTo x relation

38

Inference rule (1)

p = newi T() oi new p

oi new p → oi flowsTo p

39

Inference rule (2)

p = r r assign p

oi flowsTo r ∧ r assign p → oi flowsTo p

40

Inference rule (3)

p.f = a a pf(f) p

b = r.f r gf(f) b

oi flowsTo a ∧ a pf(f) p ∧ p alias r ∧ r gf(f) b
→ oi flowsTo b

41

Inference rule (4)

it remains to define x alias y

(x and y may point to same object):

oi flowsTo x ∧ oi flowsTo y → x alias y

42

Prolog program for Andersen algorithm

new(o1,x). % x=new_1 Foo()

new(o2,z). % z=new_2 Bar()

assign(x,y). % y=x

assign(x,w). % w=x

pf(z,y,f). % y.f=z

gf(w,v,f). % v=w.f

flowsTo(O,X) :- new(O,X).

flowsTo(O,X) :- assign(Y,X), flowsTo(O,Y).

flowsTo(O,X) :- pf(Y,P,F), gf(R,X,F), aliasP,R), flowsTo(O,Y).

alias(X,Y) :- flowsTo(O,X), flowsTo(O,Y).

43

How to use the result of the analysis?

When the analysis infers o flowsTo y, what did we prove?
– nothing useful, usually, since o flowsTo y does not imply that there

is a program input for which o will definitely flow to y.

The useful result is when the analysis can’t infer o flowsTo y
– then we have proved that o cannot flow to y for any input

– this is useful information!

– it may lead to better optimization, verification, compilation

Same arguments apply to alias, pointsTo relations
– and other static analyses in general

44

Example of inference

45

Inference Example (1)

The program:

x = new Foo(); // o1

z = new Bar(); // o2

w = x;

y = x;

y.f = z;

v = w.f;

46

Inference Example (2):

The program is converted to six facts:

o1 new x o2 new z

x assign w x assign y

z pf(f) y w gf(f) v

Inference Example (3), infering facts

o1 new x o2 new z

x assign w x assign y

z pf(f) y w gf(f) v

The inference:

o1 new x → o1 flowsTo x

o2 new z → o2 flowsTo z

o1 flowsTo x ∧ x assign w → o1 flowsTo w

o1 flowsTo x ∧ x assign y → o1 flowsTo y

o1 flowsTo y ∧ o1 flowsTo w → y alias w

o2 flowsTo z ∧ z pf(f) y ∧ y alias w ∧ w gf(f) v
→ o2 flowsTo v

...
48

Example: visualizing analysis deductions

49

o2

y

z
new

w

v

x

o1
new

pf[f]gf[f]

Example (4):

Notes:
– inference must continue until no new facts can be derived

– only then we know we have performed sound analysis

Conclusions from our example inference:
– we have inferred o2 flowsTo v

– we have NOT inferred o1 flowsTo v

– hence we know v will point only to instances of Bar

– (assuming the example contains the whole program)

– thus casts (Bar) v will succeed

– similarly, calls v.f() are optimizable

50

Extending the analysis for calls and arrays

51

Handling of method calls

Issue 1: Arguments and return values:

– these are translated into assignments of the form p=r

Example:

Object foo(T x) { return x.f }

r = new T; s = foo(r.g)

is translated into

foo_retval = x.f

r = new T; s = foo_retval; x = r.g

52

Handling of method calls

Issue 2: targets of virtual calls

– call p.f() may call many possible methods

– to do the translation shown on previous slide, must
determine what these targets are

Suggest two simple methods:

–

–

53

Handling of arrays

We collapse all array elements into one element

– this array element will be represented by a field arr

– ex:

p.g[i] = r

becomes

p.g.arr = r

54

Summary of Static Analysis

Determine run-time properties of programs statically

– example property: “is variable x a constant?”

Statically: without running the program

– it means that we don’t know the inputs

– and thus must consider all possible program executions

We want sound analysis: err on the side of caution.

– allowed to say x is not a constant when it is

– not allowed to say x is a constant when it is not

Static analysis has many clients

– optimization, verification, compilation

55

CFL-Reachability

deduction via parsing of a graph

56

“Parsing the graph”

Visualization of inferences on slides 41 and 42 parses
the strings in the “graph of binary facts” using the
CYK algorithm

57

The technique

Flow-insensitive analysis:

– collapse into one all program points (ie, stmt entry and
exits)

– reduces the amount of analysis state to maintain

– reduces precision, too, of course

Transform this program

if (…) p = new T1();

else p = new T2();

r = p; p = r.f;

into this one:

58

p = new T1()

p = new T2()p = r.f

r = p

Andersen’s algorithm

• Deduces the flowsTo relation from program
statements

– statements are facts

– analysis is a set of inference rules

– flowsTo relation is a set of facts inferred with analysis
rules

• Statement facts: we’ll write them as x
predicateName y

– p = newi T() oi new p

– p = r r assign p

– p = r.f r gf(f) p

– p.f = r r pf(f) p
59

Inference via graph reachability

Prolog’s search is too general and expensive.

may in general backtrack (exponential time)

Can we replace it with a simpler inference algorithm?

possible when our inference rules have special form

We will do this with CFL-rechability

it’s a generalized graph reachability

60

(Plain) graph reachability

Reachability Def.:
Node x is reachable from a node y in a directed graph G if

there is a path p from y to x.

How to compute reachability?
depth-first search, complexity O(N+E)

61

Context-Free-Language-Reachability

CFL-Reachability Def.:
Node x is L-reachable from a node y in a directed labeled graph G if
– there is a path p from y to x, and
– path p is labeled with a string from a context free language L.

62

The context-free language L:

matched → matched matched

| (matched)

| [matched]

| e

|

[(e [e]]

e

e)

]
s t

Is t reachable from s according to the language L?

Computing CFL-reachability

Given

– a labeled directed graph P and

– a grammar G with a start nonterminal S,

we want to compute whether x is S-reachable from y

– for all pairs of nodes x,y

– or for a particular x and all y

– or for a given pair of nodes x,y

We can compute CFL-reachability with CYK parser

– x is S-reachable from y if CYK adds an S-labeled edge
from y to x

– O(N3) time

63

Convert inference rules to a grammar

The inference rules

ancestor(P,C) :- parentof(P,C).

ancestor(A,C) :- ancestor(A,P), parentof(P,C).

Language over the alphabet of edge labels

ANCESTOR ::= parentof

| ANCESTOR parentof

Notes:

– initial facts are terminals (perentof)

– derived facts are non-terminals (ANCESTOR)

64

grandma

So, which rules can be converted to CFL-reachability?

ANCESTOR ::= parentof | ANCESTOR parentof

Is “son” ANCESTOR-reachable from “grandma”?

65

parentof parentof parentof

mom me son

ANCESTOR

ANCESTOR

ANCESTOR

grandma

What rules can we convert to CFL-rechability?

Let’s add a rule for SIBLING:

ANCESTOR ::= parentof | ANCESTOR parentof

SIBLING ::= ???

We want to ask whether “bro” is SIBLING-reachable from
“me”.

66

parentof parentof parentof

mom me son

parentof

bro

Conditions for conversion to CFL-rechability

• Not all inference rules can be converted

• Rules must form a “chain program”

• Each rule must be of the form:
foo(A,D) :- bar(A,B), baz(B,C), baf(C,D)

• Ancestor rules have this form
ancestor(A,C) :- ancestor(A,P), parentof(P,C).

• But the Sibling rules cannot be written in chain form
– why not? think about it also from the CFL-reachability angle

– no path from x to its sibling exists, so no SIBLING-path exists

• no matter how you define the SIBLING grammar

67

Andersen’s Algorithm with Chain Program

converts the analysis into a graph parsing
problem

68

Back to Andersen’s analysis

Rules in logic programming form:
flowsTo(O,X) :- new(O,X).

flowsTo(O,X) :- flowsTo(O,Y), assign(Y,X).

flowsTo(O,X) :- flowsTo(O,Y), pf(Y,P,F), alias(P,R),
gf(R,X,F).

alias(X,Y) :- flowsTo(O,X), flowsTo(O,Y).

Problem: some predicates are not binary

69

Andersen’s algorithm inference rules

Translate to binary form

put field name into predicate name,

must replicate the third rule for each field in the program

flowsTo(O,X) :- new(O,X).

flowsTo(O,X) :- flowsTo(O,Y), assign(Y,X).

flowsTo(O,X) :- flowsTo(O,Y), pf[F](Y,P),

alias(P,R), gf[F](R,X).

alias(X,Y) :- flowsTo(O,X), flowsTo(O,Y).

70

Andersen’s algorithm inference rules

Now, which of these rules have the chain form?

flowsTo(O,X) :- new(O,X). yes

flowsTo(O,X) :- flowsTo(O,Y), assign(Y,X). yes

flowsTo(O,X) :- flowsTo(O,Y), pf[F](Y,P), alias(P,R), gf[F](R,X). yes

alias(X,Y) :- flowsTo(O,X), flowsTo(O,Y). no

71

Making alias a chain rule

We can easily make alias a chain rule with pointsTo. Recall:
flowsTo(O,X) :- pointsTo(X,O)

pointsTo(X,O) :- flowsTo(O,X)

Hence
alias(X,Y) :- pointsTo(X,O), flowsTo(O,Y).

If we could derive chain rules for pointsTo, we would be done.
Let’s do that.

72

Idea: add terminal edges also in opposite direction

For each edge o new x, add edge x new-1 o

– same for other terminal edges

Rules for pointsTo will refer to the inverted edges

– but otherwise these rules are analogous to flowsTo

What it means for CFL reachability?

there exists a path from o to x labeled with s L(flowsTo)

there exists a path from x to o labeled with s’L(pointsTo).

73

Inference rules for pointsTo

74

p = newi T() oi new p p new-1 oi

oi new p → oi flowsTo p Rule 1

p new-1 oi → p pointsTo oi Rule 5

p = r r assign p p assign-1 r

oi flowsTo r and r assign p → oi flowsTo p Rule 2

p assign-1 r and r pointsTo oi → p pointsTo oi Rule 6

Inference rules for pointsTo (Part 2)

We can now write alias as a chain rule.

75

p.f = a a pf(f) p p pf(f)-1 a

b = r.f r gf(f) b b gf(f)-1 r

oi flowsTo a a pf(f) p p alias r r gf(f) b → oi flowsTo b

b gf(f)-1 r r alias p p pf(f)-1 a a flowsTo oi → b pointsTo oi

Rules 3, 7

Both flowsTo and pointsTo use the same alias rule:

x pointsTo oi oi flowsTo y → x alias y Rule 8

The reachability language

All rules are chain rules now

– directly yield a CFG for flowsTo, pointsTo via CFL-
reachability :

flowsTo → new

flowsTo → flowsTo assign

flowsTo → flowsTo pf[f] alias gf[f]

pointsTo → new-1

pointsTo → assign-1 pointsTo

pointsTo → gf[f]-1 alias pf[f]-1 pointsTo

alias → pointsTo flowsTo

76

Example: computing pointsTo-, flowsTo-
reachability

Inverse terminal edges not shown, for clarity.

77

o2

y

z
new

w

v

x

o1
new

pf[f]gf[f]

Summary (Andersen via CFL-Reachability)

The pointsTo relation can be computed efficiently

– with an O(N3) graph algorithm

Surprising problems can be reduced to parsing

– parsing of graphs, that is

78

CFL-Reachability: Notes

The context-free language acts as a filter

– filters out paths that don’t follow the language

We used the filter to model program semantics

– we filter out those pointer flows that cannot actually
happen

What do we mean by that?

– consider computing x pointsTo o with “plain” reachability
• plain = ignore edge labels, just check if a path from x to o exists

– is this analysis sound? yes, we won’t miss anything
• we compute a superset of pointsTo relation based on CFL-

reachability

– but we added infeasible flows, example:
• wrt plain reachability, pointer stored in p.f can be read from p.g

79

