
1

Lecture 13: Static typing

Why types?
Bitflip attack

Ras Bodik
Alvin Cheung
Maaz Ahmad

Talia Ringer
Ben Tebbs

Hack Your Language!
CSE401 Winter 2016
Introduction to Compiler Construction

Announcements

• Midterm grades released
– Submit requests on gradescope within the next week
– We will regrade the entire exam

• PA3 due Tuesday at 11pm

• Project milestones released
– We will post comments to your proposals by this

weekend
– Two part assignment with different due dates

2

Outline for today

Motivation for types:

- Language-based security
- Runtime program performance

Introduction to types

- Static vs. dynamic types
- The “bitflip” exploit

3

Static vs. dynamic; value vs. variable

Dynamic = known at run time
specific to a given program input

Static = known at compile time
not specific to given input => must be true for all inputs

Type = set of values and operations on them
example: ints are -232, …, 0, … 232-1, with operations +, -, …

Dynamic type of a variable
is the type of the value stored in the variable at runtime

Static type of a variable
- Annotated by programmers or inferred by the compiler
- type of all values that the variable might hold at runtime

4

Security
Introduction to static typing, Part I

5

You are playing an MMO

Your browser connects to a game server

The server provides ways to:
return player’s data
return currently running games

Server must restrict access to such data

One way to do so is via language-based security
using private fields of objects

6

Private fields of objects

7

Private object fields

We can create an object with a private field
the private field stores a password that can be checked
against a guessed password for equality but the stored
password cannot be leaked

We don’t need a statically typed language for this
This can be done even in Lua

Next slide shows the code

8

Object with a private field

// Usage of an object with private field
def safeKeeper = SafeKeeper(“401rocks”)
print safeKeeper.checkPassword(“401stinks”) --> False

// Implementation of an object with private field
function SafeKeeper (password)

def pass_private = password

def checkPassword (pass_guess) {
pass_private == pass_guess

}
// return the object, which is a table
{ checkPassword = checkPassword }

}

9
Q: Why is it pass_private secure?

Let’s try to read out the private field!

Assume I agree to execute any code you give me.
Can you print the password (without trying all passwords)?

def safeKeeper = SafeKeeper(“401rocks”)
def yourFun = <paste any code here>
// I am even giving you a ref to keeper
yourFun(safeKeeper)

This privacy works great, under certain assumptions. Which
features of the 401 language do we need to disallow to
prevent reading of pass_private?

1. overriding == with our own method that prints its arguments
2. access to the environment of a function and printing the content of

the environment
(such access could be allowed to facilitate debugging, but it destroys privacy)

10

Same in Java, using private fields

class SafeKeeper {
private long pass_private;
SafeKeeper(password) { pass_private = password }

Boolean checkPassword (long pass_guess) {
return pass_private == pass_guess

} }

SafeKeeper safeKeeper = new SafeKeeper(“401rocks”)
print safeKeeper.checkPassword(“401stinks”) --> False

11

Challenge: how to read out the private field?

Different language. Same challenge.

SafeKeeper safeKeeper = new SafeKeeper(19238423094820)
<paste your code here; it can refer to ‘safeKeeper’>

Compiler rejects program that attemps to read the private field
That is, p.private_field will not compile to machine code

But some features of Java need to be disallowed to prevent
reading of pass_private.

- Reflection, also known as introspection
read about the ability to read private fields with java reflection API)

12

Summary of privacy with static types

It’s frustrating to the attacker that

(1) she holds a pointer a to the Java object, and

(2) knows that password is at address a+16 bytes

yet she can’t read out pass_private from that
memory location.

13

14

Why can’t any program read that field?

0. Compiler will reject program with p.private_field
1. Type safety prevents variables from storing

incorrectly-typed values.
B b = new A() disallowed by compiler unless A extends B

2. Array-bounds checks prevent buffer overflows
3. Can’t manipulate pointers (addresses) and hence

cannot change where the reference points.
Together, these checks prevent execution of arbitrary
user code…

Unless the machine breaks! (will see later in lecture)

Performance
Introduction to static typing, Part II

15

What makes a language implementation fast?

Performance as measured on “language shootout”
An incomplete list of languages. See web site for more.
http://benchmarksgame.alioth.debian.org/

Norm performance language + implementation (2007)

1.0 C / gcc
1.2 Pascal Free Pascal
1.5 Java 6 -server
1.6 Lisp SBCL
1.8 BASIC FreeBASIC

3.1 Fortran G95

16

11 Lua
14 Scheme MzScheme
17 Python
21 Perl
23 PHP
44 JavaScript SpiderMonkey
48 Ruby

Performance diffs form equivalence classes

Notice the huge step between 3x and 10x
What might be the source of the difference?

17

2007

For comparison, more recent results (2012)

compilers for dynamically typed languages improved since 2007
partly motivated by browser performance wars (JavaScript JITs)
Languages such as JS and Racket use JIT to combine both static and
runtime info (will revisit in 2 weeks)

18

2012 results

19

What do compilers know thanks to static types?

Dynamically-typed languages (Python/Lua/JS):

function foo(arr) {
return arr[1]+2

}

Statically-typed languages (Java/C#/Scala):

function foo(arr:int[]) : int {
return arr[1]+2

}

20

Questions that compilers must solve:
• Can this code throw exceptions?
• Which +?
• How to access [1] from arr?

Declared types lead to compile-time facts

Let’s discuss our example: arr[1] + 2

The + operator/function:

21

Declared types lead to compile-time facts

Let’s discuss our example: arr[1] + 2

The + operator/function:
In Java: we know at compile time that + is an integer
addition, because type declarations tell the compiler the
types of operands.

In JS: we know at compile time that + could be either int
addition or string concatenation. Only at runtime, when we
know the types of operand values, we know which of the
two functions should be called.

22

Declared types lead to compile-time facts

Does a Python compiler know that variable arr will
refer to a value of indexable type?

23

Declared types lead to compile-time facts

Does a Python compiler know that variable arr will
refer to a value of indexable type?

It looks like it should, because arr is used in the indexing
expression arr[1].

But Python does not even know this fact for sure. After all,
foo could be legally called with a float argument, say
foo(3.14). Yes, foo will throw an exception in this case, at
arr[1], but the point is that the compiler must generate
code that checks (at runtime) whether the value in arr is an
indexable type. If not, it will throw an exception.

24

Data structure representation

In Python, arr[i] must check at runtime:
- is (the value of) arr an indexable object (list or a

dictionary)?
- what is type (of value in) of arr[1]?

The representation of array of ints must facilitate
these runtime questions:

25

Type: list, length: 10

arr
arr[0]

arr[1]

Suppose arr = [1, 42, “a” …]Type: int

1

Type: int

42
arr[2]

Type: string

Type: list, length: 2

“a”

“\0”

Compare this with array of ints in Java

Java arrays must be homogeneous
- All elements are of the same type (or subtype)

We know these types at compile time
- So the two questions that Python asks at runtime can be

skipped at Java runtime, because they are answered
from static type declarations at compile time

Hence Java representation of arrays of ints can be:

26

Type: int [], length: 10

arr
1

42

…

Field access in presence of inheritance

Assume Lua objects:
Assume class A with field fa,
subclass B of A with field fb, and
object b is an instance of B

Count dictionary accesses when we do b.fa?

27

1 fb : 42
__index :

2
fa : 10

__index :

3

b
prototype object for Aprototype object for B

= __mt pointer

The same in Java

Assume the same class hierarchy:
Assume class A with field fa,
subclass B of A with field fb, and
object b is an instance of B

What is the Java object layout for b?

28

Header (type: B, …)

b
fa: 42

fb: 10

Compiler can now generate instructions of the form: load(b, 16)

Objects in (most) dynamically typed languages

Cost of access to objects built from dictionaries
Such objects are in Lua or JavaScript

Reading/writing an attribute residing in the object:
1

Reading an attribute in a prototype:
Includes inherited methods and constants (class vars):

1 + 2n (n = length of the class hierarchy)
These dictionary lookups use string-valued keys

The JIT compiler might be able to optimize them

29

Lesson

Programs in languages with static typing run faster.

Reason: the compiler has more information about the
program and can thus generate more efficient code.

- Better layout of objects: structs rather than dictionaries
- No dynamic examination of types of values of base types

such as ints, floats

Performance is one reason why we use static types.
- But JIT (runtime) compilers for dynamically typed

languages can obtain some of this information at
runtime, and produce improved code.

30

Next

Type safety provides strong security guarantees.

But certain assumptions must hold first:
- banning some constructs of the language
- integrity of the hardware platform

These are critical. Failure to provide these permits
type system subversion.

Type system subversion
means and consequences

31

Manufacturing a Pointer in C

32

Attack in C language

Before we describe the attack in Java, how would one
forge (manufacture) a pointer in C

union { int i; char * s; } u;

Here, i and s are names for the same location.
u.i = 1000
u.s[0] --> reads the character at address 1000

http://stackoverflow.com/questions/4748366/can-we-use-pointer-in-union

33

An illustration
struct A { int a; }; struct B { double b; };
int main () {
struct A * a = (struct A *)malloc(sizeof(struct A));
a->a = 10;
struct B * b = (struct B *)a;
printf("b: %f\n", b->b);

}

$./a.out
b: 0.000000

$./a.out
b: -0.000000

$./a.out
b: -
3105036184601424764863287854409128521424031322875637732419490432442543026
9594990429103660979270681167259778911549969386434600992581431495917188135
1099776175729828614087496746441130079273810063142804673252690491933127660
8830997266432.000000 34

How to create a hardware error?

35

36

Memory Errors

A flip of some bit in memory
Can be caused by cosmic ray, or deliberately through
radiation (heat)

37

Effects of memory errors

0x4400 0x4400

0x4404

0x4408

0x440C

0x4410

after bit 3 is flipped:0x4408

Exploitable!

Bitflip manufactures a pointer
except that we cannot control what pointer and in which
memory location.

Manufacturing a Pointer in Java and
Exploiting it

38

39

Overview of the Java Attack

Step 1: use a memory error to obtain two variables p
and q, such that

1. p == q (i.e., p and q point to same memory loc) and
2. p and q have incompatible, custom static types

Cond (2) normally prevented by the Java type system.

Step 2: use p and q from Step 1 to write values into
arbitrary memory addresses

– Fill a block of memory with desired machine code
– Overwrite dispatch table entry to point to block
– Do the virtual call corresponding to modified entry

40

The two custom classes will form C-like union

class A {
A a1;
A a2;
B b; // for Step 1
A a4;
int i; // for address

// in Step 2
}

class B {
A a1;
A a2;
A a3;
A a4;
A a5;

}

Assume 3-word object header

Step 1 (Exploiting The Memory Error)

A header
A
A
B
A

int
B header

A
A
A
A

A

0x6000
0x600C
0x6010
0x6014
0x6018
0x601C
0x6020
0x602C
0x6030
0x6034
0x6038
0x603C

B orig;
A tmp1 = orig.a1;
B bad = tmp1.b;

orig

tmp1

bad

The heap has one A object, many B objects. All fields of type A point to the
only A object that we need here. Place this object close to the many B objects.

B header

42

Step 1 (Exploiting The Memory Error)

A header
A
A
B
A

int
B header

A
A
A
A

A

0x6000
0x600C
0x6010
0x6014
0x6018
0x601C
0x6020
0x602C
0x6030
0x6034
0x6038
0x603C

B orig;
A tmp1 = orig.a1;
B bad = tmp1.b;

orig flip bit 0x40 in orig.a1

tmp1

bad

Now bad points to an A object!

Note: it is a coincidence that orig.a points to
the top of the object header. It could equally
likely point into an object of type B.

B header
A
A
A
A

A

0x6040
0x604C
0x6050
0x6054
0x6058
0x605C

tmp1.b

43

Step 1 (Exploiting The Memory Error)

A header
A
A
B
A

int
B header

A
A
A
A

A

0x6000
0x600C
0x6010
0x6014
0x6018
0x601C
0x6020
0x602C
0x6030
0x6034
0x6038
0x603C

B orig;
A tmp1 = orig.a1;
B bad = tmp1.b;

orig flip bit 0x3C in orig.a1

tmp1

bad

In both cases, bad, with static type B, now
points to an A object!

B header
A
A
A
A

A

0x6040
0x604C
0x6050
0x6054
0x6058
0x605C

tmp1.b

Step 1 (cont)

A p; // pointer to the single A object
while (true) {
for (int i = 0; i < b_objs.length; i++) {

// iterate over all B objects
B orig = b_objs[i];

A tmp1 = orig.a1; // Step 1, really check a1, a2, a3, …
B q = tmp1.b;

Object o1 = p; Object o2 = q; // check if we found a flip
// must cast p,q to Object to allow comparison
if (o1 == o2) {

writeCode(p,q); // now we’re ready to invoke Step 2
} } }

Iterate until you find that a flip happened and was exploited.

44

Step 2 (Writing arbitrary memory)

int offset = 8 * 4; // Offset of i field in A
A p; B q; // Initialized in Step 1, p == q;

// assume both p and q point to an A

void write(int address, int value) {
p.i = address – offset;
q.a5.i = value; // q.a5 is an integer treated as a pointer

}
Example: write 337 to address 0x4020

A header
A
A
B
A

0x4000

p

q

0x4020

0x4004
0x4000

337
p.iq.a5

…

q.a5.i

this location can be accessed
as both q.a5 and p.i

This code type checks

46

Results (paper by Govindavajhala and Appel)

With software-injected memory errors, took over
both IBM and Sun JVMs with 70% success rate

think why not all bit flips lead to a successful exploit

Equally successful through heating DRAM with a lamp

Defense: memory with error-correcting codes
– ECC often not included to cut costs

Most serious domain of attack is smart cards
Paper: http://www.cs.princeton.edu/~sudhakar/papers/memerr.pdf

Summary

• Static types are important
– Language-based security
– Performance (requires compiler support)

• But they are only good as long as there are no side
channels to circumvent the type system

47

