
1

Lecture 12: Data Abstraction

Objects
Inheritance
Prototypes

Ras Bodik
Alvin Cheung
Maaz Ahmad

Talia Ringer
Ben Tebbs

Hack Your Language!
CSE401 Winter 2016
Introduction to Compiler Construction

Announcements

PA3 due next Tuesday 11PM

Makeup lecture this Friday
– Same place and time
– We will be video taping the lecture

Final project update
We are posting comments to your proposals.

Give us permission to add comments. Turn on email notifications.

Milestone 1 will be due next week: coding tutorial

2

Next two lectures will expand on the parser

parserPL desugarASTL AST-based interpreterASTT

parsingprogram text Syntax-directed
translationparse tree AST

grammar

Bytecode interpreter

Objects
A review

4

The 401 language so far

Our constructs dealt with control abstraction:
hiding complex changes to program control flow under
suitable programming language constructs

Examples:
- iterators, built on closures
- backtracking in regexes, built with coroutines
- reactive programming, built with continuations

5

Data abstraction

If there are control abstractions, there must also be
data abstractions

- for hiding complex data representations
- we’ve seen them in the d3 language

- selections, transitions

Constructs that abstract data representations:

6

Language construct for data
abstraction

Hides what details of
implementation

Floating point Mantissa, exponents

Relations in databases How rows and columns are stored
on disk

Maps and dictionaries Is it a list, hashtable, etc?

Objects (review from 143)

What are objects
- state (attributes) and
- code (methods)

Why objects?
abstraction: hide implementation using encapsulation

Why inheritance?
reuse: specialization of an object’s behavior reuses its code

7

Minimal core language to support objects?

Can we implement objects as a library?
that is, without changes to the interpreter?

It’s the very familiar question:
What is the smallest language on which to build to objects?

Our language already supports closures
which are similar to objects: they carry code and state

Can we build objects from this existing mechanism?
rather than any adding lots “native” support for objects?

8

Summary

Data abstractions support good software engineering
- ie, writing large software that can be maintained
- easing maintenance thanks to code modularity

Modularity is achieved by:
- reuse: use existing libraries by extending/modifying them
- code evolution: change implementation without

changing the interface, leaving client code unchanged

Objects carry code and state
- like closures
- so we will try to build them on top of closures first

9

Try #1: Objects as Closures

10

We have seen closure-based objects already

Where did we use closures as objects?

Iterators are single-method objects
- on each call, an iterator returns the next element and

advances its state to the next element
- in essence, they are single-method objects that support

the next()method

11

Multi-method closure-based objects

Can we overcome the single-method limitation?

Yes, of course:

d = newObject(0)
print d("get") --> 0
d("set", 10)
print d("get") --> 10

12

Multi-method object represented as a closure

function newObject (value)
function (action, v) {

if (action == "get“) {
value

} else if (action == "set“) {
value = v

} else {
error("invalid action")

} } }

13

Summary

Closures carry own state and code
so we can use them as objects

Closures support only one operation (function call)
so we can support only one method

By adding an argument to the call of the closure
we can dispatch the call to multiple “methods”

But unclear if we can support inheritance
i.e., specialize an object by replacing just one of its methods

14

Try #2: Objects as tables
strawman version

15

Implementation plan for objects, inheritance

parserPL desugarASTL bytecode interpreterASTT

2) desugar (:) to simple tables

1) add convenient syntax (:)

3) add meta-tables

4) define objects and inheritance as a mere library (meta-programming)

Reading for today

Required reading:
Chapter 16 in PiL:
http://www.lua.org/pil/contents.html#16

(Also linked from PA3 assignment doc)

17

Recall 401 dicts (inspired from Lua)

Create a table
{}
{ key1 = value1, key2 = value2 }

Add a key-value pair to table (or overwrite a k/w pair)
t = {}
t[key] = value

Read a value given a key
t[key]

18

Implement object as a table of attributes

Account = {balance = 0}

Account[“withdraw”] = function(v) {
Account[“balance”] = Account[“balance”] - v

}

Account[“withdraw”](100.00)

This works (!?)
We don’t need to change anything!

19

Let’s improve the table-based object design

Method call on an object:

Account[“withdraw”](100.00)

This works semantically but is syntactically ugly

Solution?
Add new constructs through syntactic sugar
We need to change the parser

20

The language design discussion

21

Question 1: What construct we add to the
grammar of the surface language?

let’s say we want obj.field
E ::= E.E ??

| E.ID ??
| ID.E ??
| ID.ID ??

Question 2: How do we rewrite (desugar) this
construct to the base language?

Get vs. put

Reading an object field:

p.f → p[“f”] → get(p, “f”)
surface language base language bytecode

We need to distinguish between reading p.f
v = p.f à get(p, "f")

and writing to p.f
p.f = v à put(p, "f", v)

22

Defining object methods

We will desugar

function Account.withdraw (v) {
Account.balance = Account.balance - v

}

into

Account.withdraw = function (v) {
Account.balance = Account.balance - v

}

23

Try #3: Objects as tables
a more robust version

24

Object as a table of attributes, revisited

Account = {balance = 0}

function Account.withdraw (v) {
Account.balance = Account.balance - v

}
Account.withdraw(100.00)
a = Account

-- this code will make the next expression fail
Account = nil

a.withdraw(100.00)
25

-- ERROR!

Solution: introduce self

Account = {balance = 0}
-- self “parameterizes” the code
function Account.withdraw (self, v) {

self.balance = self.balance - v
}

a1 = Account
Account = nil
a1.withdraw(a1, 100.00)

a2 = {balance=0, withdraw = Account.withdraw}
a2.withdraw(a2, 260.00) 26

Hiding self: the colon notation

-- method definition
function Account:withdraw (v) {

self.balance = self.balance - v
}
a:withdraw(100.00) -- method call

Which construct to add to the surface
language to support method calls?

E ::= E:E
E ::= E:ID
E ::= E:ID(args)

27

Desugaring E:ID(args)

28

E:ID(args) à

E.ID(E, args) -- this doesn’t work (why?)

-- we want instead:
tmp = E;
tmp.ID(tmp, args)

Discussion

What is the inefficiency of our current object design?

Each object carries its attributes and methods.

If these are the same across many objects, a lot of space is
wasted.

We will eliminate this inefficiency next

29

Summary of desugaring for objects

Access to an attribute
e.x → e["x"] -- get
e.x = v → e["x"] = v -- put

Method definition and call
function e:f(params) body -- def

→
e.f = function (self,params) body

expr:f(args) -- call
→

def t = expr; t.f(t,args) 30

Meta-Methods

31

Meta-methods and meta-tables

Meta-methods and meta-tables:
Lua constructs for meta-programing with tables

Meta-programming:
creating a new language construct w/out compiler hacking

Meta-tables will be used for shallow embedding
– ie, constructs created by writing library functions
– (sugar will be added to make them more convenient)
– recall: shallow embedding of a DSL = program in the DSL

does not exist as a data structure
32

The __index attribute of the meta-table

Changes how errors are handled:
When a lookup of a field fails, the interpreter
consults the __index field in the meta-table.

a = {}1; b = {f=3}2
print(a["f"]) --> nil
setmetatable(a, {__index = b}3)
print(a["f"]) --> 3

33a b

1

__index : o2

3

f : 3

2

Prototypes
poor man’s classes

34

Prototype

Prototype:
- a template for new objects
- the prototype is a regular object

(as far as the interpreter can tell)
- you can almost think of it as a “class”

The prototype stores the common attributes
- objects refer to the prototype
- these objects will share properties with the prototype

35

Runtime setup of objects and prototypes

How are objects and prototypes linked?

36

1 __index : o2

3

withdraw : lambda

2

a (an instance object)

a:withdraw(100)

prototype object

Can we avoid the extra meta-table?

Let’s use the prototype also as a meta-table.
It saves space and memory allocation time.

37

1
__index : o2

withdraw : lambda

2

a (an instance object)

a:withdraw(100)

prototype object

Define the prototype and its methods

Account = {balance = 0}1
function Account:new (o) {

o = o or {}
setmetatable(o, self)
self.__index = self
o

}2
function Account:deposit (v) {

self.balance = self.balance + v
}3
function Account:withdraw (v) {

if (v > self.balance) {
error"insufficient funds"

}
self.balance = self.balance - v

}4 38

balance : 0
new : lambda 2

deposit : lambda 3
withdraw : lambda 4

__index :

1

Account

__index is added
when new is called

Create an object

-- we repeat new() from previous slide

function Account:new (o) {
-- create new object if not provided

o = o or {}2
self.__index = self
setmetatable(o,self)
o

}

à a = Account:new()

39

balance : 0
new : lambda 2

deposit : lambda 3
withdraw : lambda 4

__index :

1

Account

2

self

o a

Call a method of an object

-- we repeat deposit() from a previous slide

function Account:deposit (v) {
self.balance = self.balance + v

}

à a:deposit(100.00)

40

balance : 0
new : lambda 2

deposit : lambda 3
withdraw : lambda 4

__index :

1

Account

balance : 100
2

self

a

balance is added during self.balance = …

Note about 401 assignments

We may decide not to use metatables, just the
__index field. The code

function Account:new (o) {
o = o or {}
setmetatable(o,self)
self.__index = self
o

}
Would become

function Account:new (o) {
o = o or {}
o.__index = self
o } 41

Which attrs will remain in the prototype?

After an object is created, it has attrs given in new()

a = Account:new({balance = 1000000})

What if we assign to the object later?

a.deposit = function_value?

Where will the attribute deposit be stored?

42

Discussion of prototype-based inheritance

Notice the sharing:
- constant-value object attributes (fields) remain stored in

the prototype until they are assigned.

- After assignment, the object stores the attribute rather
than finding it in the prototype

43

