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Upcoming important dates

Midterm in class this Wednesday

Sections on Thursday as usual

PA3 is out and will be due on 2/23

Work in teams of 3

Makeup lecture next Friday, 2/19

We will record it better than last time
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Where are we?

We have seen two ways to build parse trees

CYK and Earley parsers

Today, we’ll learn about REs and backtracking parsers

Regular expressions and their compilation to automata

Regexes and their implementation using backtracking
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Puzzle 1

Write a regex that tests whether a number is prime.

Hint:

\n matches the string matched by the nth regex group
Ex: regex c(aa|bb)\1 matches  strings caaaa and cbbbb

the prime tester must be a regex, not a regular expression!
the latter do not support \n
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Sample Uses of Regular Expressions 
and of string processing in general



Sample string processing problems

Web scraping and rewriting

collect data from web pages; “linkify” mailing addresses

Cucumber, a Ruby testing framework with “NLP”
When I go to "Accounts" Then I should see link "My Savings"

Lexical analysis in interpreters and compilers

float x=3.14   -->  FLOATTYPE, ID("x"), EQ, FLOATLIT(3.14)

Config tools include “file name manipulation” languages

${dir}\foo --> "c:\\MyDir\\foo"

Editors, search and replace

`quoted text’ D`Souza --> `quoted text’ D’Souza
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1. Web scraping and rewriting

Rewrite a web page using GreaseMonkey scripting.

The idea: web pages are more readable when you 
view the print-friendly, ad-free pages.  Automate this!

Approach: Your script will rewrite links on a page to 
point to the print-friendly version of target page.

How: When user clicks on a link, fetch (but do not 
display) the target page; use a regex to find in the 
target HTML text the (best-guess) link to the print-
friendly page; rewrite the link to point to that page; 
follow the rewritten link to display the friendly page.
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2. Cucumber: a Ruby testing framework

A sample Cucumber test file:
Scenario: Test the banking web service

Given I log in as "bonnie" with password "clyde"

When I go to "Accounts" 

Then I should see a link "Our Robbery Savings" 

When I follow this link

Then I the value of "Interest" should be "$1,024.00"

Meaning of this test:
"Given" makes the script go to login to the web site.

"When" clause clicks on the link Accounts.

"Then" clause tests that resulting page contains a link to given account.
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3. Lexical analysis in a compiler/interpreter

Input: a program
function timedCount() { // my function

document.getElementById('txt').value=c;

}

Output: a sequence of tokens
FUNCTION, ID("timedCount"), LPAR, RPAR, LCUR, 
ID("document"), DOT, ID("getElementById"), LPAR, 
STRING("txt"), RPAR, DOT, ID("value"), ASGN, ID("c"), 
SEMI, RCUR

REs facilitate concise description of tokens
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Notes on lexical analysis

The lexer partitions the input into lexemes

Lexemes are mapped to tokens

The stream of tokens is fed to the parser

Some tokens are associated with their lexemes

Whitespace and comments are typically skipped
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Puzzle 2

Ideally, the lexical analyzer produces a list of tokens 
without consulting the parser 

we want tokenizing to be syntax-insensitive, 
i.e., can be performed prior to parsing 

Q: Give a JavaScript expression E whose tokenization 
depends on the context, on where E appears

i.e., lexer cannot tokenize input w/out feedback from parser
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4. File name processing languages

In shell scripts and IDEs, command line args can refer 
to variables such as workspace_loc:

This is translated into program arguments:
args = { "--inputDir", "c:\\wspace\\MyDirectory", 

"--outputDir", ".\\temp dir" }

Must escape \ and quotes during translation

Tricky design. Eclipse designed this substitution language 
wrong: their escaping rules prevent you from expressing 
some values that you may want to pass into the program. 12



5. Search for strings in text editors

Imagine you want to search for names containing 
a ' and correct them.  Examples:

D'Souza --> D’Souza

D`Souza --> D’Souza

The challenge: your replacement should not change 
quotes that delineate quotations, such as 

`quoted text’

Again, this can be solved conveniently with REs
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Useful string processing operations

Accept: the whole string match

Does the entire string s match a pattern r?

Match: a prefix match

Does some prefix of s match a pattern r?

Search: find a substring

Does a substring of s match a pattern r?

Tokenize: Lexical analysis

Partition s into lexemes, each accepted by a pattern r

Extract: as match and search but extract substrings

Regex r indicates, with ( ), which substrings to extract

Replace: replace substrings found with a new string
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Discovering automata and REs
a revisionist history



Programming model of a small language

Design of a small (domain-specific) language starts 
with the choice of a suitable programming model

Why a new model may be needed? Why can’t use 
procedures?  Because procedural abstraction (a procedure-
based library) cannot always hide the plumbing 
(implementation details)

For string-based processing, automata and regular 
expressions are usually the right programming model

regexes are hard to hide under a procedure library, although 
we have seen how to do it with coroutines.

Let’s use string processing as a case study on how to 
discover the programming model for small languages
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Let's write a lexer (a.k.a. tokenizer, scanner)

First, we’ll write the scanner by hand

• We'll examine the scanner’s repetitious plumbing

• Then we'll hide the plumbing in a programming model

A simple scanner will do.  Only four tokens:

TOKEN Lexeme

ID a sequence of one or more letters or 
digits starting with a letter

EQUALS “==“

PLUS “+”

TIMES “*”



Operational scanner

c=nextChar();

if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}}

if (c == ‘+’) { return PLUS; }

if (c == ‘*’) { return TIMES; }

if (c is a letter) { 

c=NextChar(); 

while (c is a letter or digit) {  c=NextChar(); }

undoNextChar(c);

return ID;

}

Note: this scanner does not handle errors.  What happens if the input is "var1 = 
var2“?  It should be var1 == var2.  An error should be reported at around '='.



Imperative scanner

You could write your entire scanner in this style
– and for small scanners this style is appropriate

Why does this code break as the task gets bigger? Try to add:
– lexemes that start with the same string: “if” and “iffy”

– C-style comments: /* anything here /* nested comments */ */

– string literals with escape sequences: “…\t … \”…”

– error handling, e.g., “a string literal missing a closing quote 

Real-world imperative scanners can get unwieldy
– the lexical structure of the language may be hard to read out

– the scanner code obscures it by spreading the string comparisons 
and other actions across the scanner code (rather than keeping it in 
a single specification table)



Real scanners in this style get unwieldy
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From http://mxr.mozilla.org/mozilla/source/js/src/jsscan.c



Where is the scanner logic?

c=nextChar();

if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}}

if (c == ‘+’) { return PLUS; }

if (c == ‘*’) { return TIMES; }

if (c is a letter) { 

c=NextChar(); 

while (c is a letter or digit) {  c=NextChar(); }

undoNextChar(c);

return ID;

}



Imperative Lexer: what vs. how

c=nextChar();

if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}}

if (c == ‘+’) { return PLUS; }

if (c == ‘*’) { return TIMES; }

if (c is a letter) { 

c=NextChar(); 

while (c is a letter or digit) {  c=NextChar(); }

undoNextChar(c);

return ID;

}

 little logic, much plumbing



Identifying the plumbing (the how, part 1)

c=nextChar();

if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}}

if (c == ‘+’) { return PLUS; }

if (c == ‘*’) { return TIMES; }

if (c is a letter) { 

c=NextChar(); 

while (c is a letter or digit) {  c=NextChar(); }

undoNextChar(c);

return ID;

}

 characters are read always the same way



Identifying the plumbing (the how, part 2)

c=nextChar();

if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}}

if (c == ‘+’) { return PLUS; }

if (c == ‘*’) { return TIMES; }

if (c is a letter) { 

c=NextChar(); 

while (c is a letter or digit) {  c=NextChar(); }

undoNextChar(c);

return ID;

}

 tokens are always return-ed



Identifying the plumbing (the how, part3)

c=nextChar();

if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}}

if (c == ‘+’) { return PLUS; }

if (c == ‘*’) { return TIMES; }

if (c is a letter) { 

c=NextChar(); 

while (c is a letter or digit) {  c=NextChar(); }

undoNextChar(c);

return ID;

}

 the lookahead is explicit (programmer-managed)



Identifying the plumbing (the how)

c=nextChar();

if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}}

if (c == ‘+’) { return PLUS; }

if (c == ‘*’) { return TIMES; }

if (c is a letter) { 

c=NextChar(); 

while (c is a letter or digit) {  c=NextChar(); }

undoNextChar(c);

return ID;

}

must build decision tree out of nested if’s



Can we hide the plumbing?

To summarize, we want to avoid the following 
– if’s and while’s to construct the decision tree

– calls to the read method

– explicit return statements

– explicit lookahead code

Ideally, we want code that looks like the specification:

TOKEN Lexeme

ID a sequence of one or more letters or digits starting with a 
letter

EQUALS “==“

PLUS “+”

TIMES “*”



Separate out the how (plumbing)

Luckily, the plumbing follows a regular pattern:

– read next char,

– compare it with some predetermined char

– if matched, jump to the next read of next char

– repeat this until a lexeme is built; then return a token.

What’s a programming model for encoding this?

– finite-state automata

– state corresponds to history of what we have read

– finite: number of states is fixed, i.e., input independent

read a char read a char
return 
a token

compare with c1 compare with c2



Separate out the what

c=nextChar();

if (c == ‘=‘) { c=nextChar(); if (c == ‘=‘) {return EQUALS;}}

if (c == ‘+’) { return PLUS; }

if (c == ‘*’) { return TIMES; }

if (c is a letter) { 

c=NextChar(); 

while (c is a letter or digit) {  c=NextChar(); }

undoNextChar(c);

return ID;

}



Here is the automaton; we’ll refine it later

ID

TIMES

PLUS

EQUALS
==

+

*
letter

letter or digit

letter or digit

NOT  letter or digit
action: undoNextChar



A declarative scanner

Part 1: declarative (the what)

describe each token as a finite automaton 
this specification must be supplied for each scanner, of course 
(it specifies the lexical properties of the input language)

Part 2: operational (the how)

connect these automata into a scanner automaton
common to all scanners (like a library), 
responsible for the mechanics of scanning



Automata are hard to draw.  Need a notation.

For convenience and clarity, we want text notation

Kleene invented regular expressions for the purpose:

a b a followed by b (sometimes written a.b)

a* zero or more repetitions of a

a | b a or b

Our example:  ab*c

32

state state final state
a c

b



Regular expressions

Regular expressions contain:
– characters : these must match the input string

– meta-characters: these serve as operators (*, |, [,], etc)

Operators operate on REs (it’s a recursive definition)
char any character is a regular expression 

r1 r2 so is r1 followed by r2

r* zero or more repetitions of r

r1 | r2 match r1 or r2

r+ one or more instances of r, desugars to rr*

[1-5] same as (1|2|3|4|5) ; [ ] denotes a character class

[^a] any character but a

\d matches any digit

\w matches any letter
33



One could invent a ton of other meta chars

http://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html

…

1957 - John Backus and IBM create FORTRAN. There's nothing funny about 
IBM or FORTRAN. It is a syntax error to write FORTRAN while not 
wearing a blue tie.

…

1964 - John Kemeny and Thomas Kurtz create BASIC, an unstructured 
programming language for non-computer scientists.

1965 - Kemeny and Kurtz go to 1964.

…

1987 - Larry Wall falls asleep and hits Larry Wall's forehead on the keyboard. 
Upon waking Larry Wall decides that the string of characters on Larry 
Wall's monitor isn't random but an example program in a programming 
language that God wants His prophet, Larry Wall, to design. Perl is born.
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Two flavors of regular expressions 
(RE vs. regex)



Compare performance of RE in three languages

Consider regular expression X(.+)+X

Input1:  "X=================X" match

Input2:  "X==================" no match

JavaScript: "X====…========X".search(/X(.+)+X/)

– Match: fast No match: slow

Python: re.search(r'X(.+)+X','=XX======…====X=')

– Match: fast No match: slow

awk: echo '=XX====…=====X=' | awk '/X(.+)+X/'

– Match: fast No match: fast

Sidenote: compare how the three languages integrate regular expressions.
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This problem occurs in practice: HW1 fall 2010

Problem: Find mailing addresses in HTML and wrap them in links to google maps.

From  the course newsgroup: “I had been experiencing the same problem -- some 
of my regex would take several minutes to finish on long pages.

/((\w*\s*)*\d*)*Hi There/   times out on my Firefox. 

/Hi There((\w*\s*)*\d*)*/   takes a negligible amount of time. 

It is not too hard to see why this is.

To fix this, if you have some part of the regex which you know must occur and does 
not depend on the context it is in (in this example, the string "Hi There"), then you 
can grep for that in the text of the entire page very quickly. Then gather the some 
number of characters (a hundred or so) before and after it, and search on that for 
the given regex. …

I got my detection to go from several minutes to a second by doing just the first.” 37



Why do implementations differ?

Some are based on backtracking (can be slow)

to conclude that X========== does not match X(.*)*X, 
backtracking needs to try all ways to match the string, 
including: (==)(===)(=)… and (=)(=)(==)… and …

Some are based on automata

automata can keep track of all possible matches at once

There are semantic differences between the two!

see the section later in this lecture
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Implementing RE as an automaton



Finite-state automata (recall from 311)

An automaton reads an input string and accepts or 
rejects the string. 

It does so by transitioning from state to state on each 
character.

It starts in the (unique) start state.

It accepts the string if on consuming the whole string, 
the automaton is in a dedicated final state.
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41

Visual notation 

• A state

• The start state

• A final state

• A transition
a
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Finite Automata

Transition

s1 
a s2

Is read

In state s1 on input “a” go to state  s2

String accepted if

entire string consumed and automaton is in accepting state

Rejected otherwise.  Two possibilities for rejection:

– string consumed but automaton not in accepting state  

– next input character allows no transition (stuck automaton)
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Formal Definition

A finite automaton is a 5-tuple (, Q, , q, F) where:

–  :  an input alphabet

– Q: a set of states

– q:  a start state q

– F:  a set of final states F  Q

– : a state transition function: Q x  Q
(i.e., encodes transitions  state input state)
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Our use of automata

We’ll use automata as recognizers:
– recognizer accepts a set of strings, and rejects all others

An automaton will tell us if a string is a valid lexeme
– Example: an automaton for identifiers 

accepts “xyx” but rejects “+3e4”



Finite automata, in more detail

Deterministic (DFA):  

- state transition unambiguously determined by the input

- more efficient implementation

Non-deterministic (NFA): 

- state transition determined by the input and an oracle

- less efficient implementation 

NFAs have a composability property 

which we’ll use to compile REs to automata
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Deterministic Finite Automata

Example:  JavaScript Identifiers
sequences of 1+ letters or underscores or dollar signs or digits, 
starting with a letter or underscore or a dollar sign: 

letter | _ | $
letter | _ | $ | digit

S A



47

Example

Q: What does this DFA recognizes?

A: Integer literals 

with an optional + or - sign:

+

digit

S

B

A

-

digit

digit
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And another (more abstract) example 

• Alphabet {0,1}

• What strings does this recognize?

0

1

0

1

0

1
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Language defined by DFA

The language defined by a DFA is the set of strings 
accepted by the DFA. 

in the language of the identifier DFA shown above: 
x, tmp2, XyZzy, position27. 

not in the language of the identifier DFA shown above: 
123, a?, 13apples. 



NFAs
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Deterministic vs. Nondeterministic Automata

Deterministic Finite Automata (DFA)

– in each state, at most one transition per input character

– no -moves: each transition consumes an input character

Nondeterministic Finite Automata (NFA)

– allows multiple outgoing transitions for one input

– can have -moves

Finite automata need finite memory

– we only need to encode the current state

NFA’s can be in multiple states at once

– It’s still a finite (and fixed) set of states
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A simple NFA example

Alphabet: { 0, 1 }

Nondeterminism:

when multiple choices exist, automaton “magically” 
guesses which transition to take so that the string can be 
accepted (if it is possible to accept the string)

Example: 

on input “11” the automaton could be in either state 

1

1
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Epsilon Moves

Another kind of transition: -moves



The automaton is allowed to move from state A to 
state B without consuming an input character

A B
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Execution of Finite Automata (DFA)

A DFA can take only one path through the state graph

– completely determined by input 

Implementation: table-based 

nextState := transitions[currentState, nextChar]
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Execution of Finite Automata (NFA)

NFAs can choose

– whether to make -moves

– which of multiple transitions for a single input to take

We can think of NFAs in two alternative ways:

1) the choice is determined by an oracle
the oracle makes a clairvoyant choice (looks ahead into the input)

2) NFAs are in several states at once (see next slide)
these states correspond to all possible past oracle choices

We can emulate NFA

Keep track of current states.  O(NS) time.  S=#states

Or we can convert NFA to DFA.  

O(N) matching time.  But the DFA can be 2S in size.
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Acceptance of NFAs

An NFA can get into multiple states

Input:

0

1

1

0

1 0 1

Rule: NFA accepts if it can get into a final state

i.e., there is a path from start to end labeled with the input
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NFA vs. DFA (1)

NFA’s and DFA’s are equally powerful

each NFA can be translated into a corresponding DFA 
one that recognizes same strings

NFAs and DFAs recognize the same set of languages
called regular languages

NFA’s are more convenient ...

– allow composition of automata

... while DFAs are easier to implement, faster

– there are no choices to consider

– hence automaton always in at most one state
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NFA vs. DFA (2)

For a given language the NFA can be simpler than a DFA

0
1

0

0

0
1

0

1

0

1

NFA

DFA

DFA can be exponentially larger than NFA
e.g., when the NFA is translated to DFA



Translating an NFA to DFA

Key idea: NFA can be in multiple states at once.  

“The blue tokens can be in any subset of NFA states.”

Each such subset is called a configuration.

Let’s create a DFA with a state for each configuration

there are 2N such states

How do we place transitions in this DFA?

59

if char ‘a’ moves tokens from 
NFA states 5, 7 into exactly 
states 9, 15, we add a-labeled 
edge between these 
configurations.



Compiling Regular Expressions to NFAs



Two theorems from 311

• Fact 1: For every NFA there is a DFA that recognizes 
exactly the same language

• Fact 2: A language is recognized by a DFA if and 
only if it has a regular expression

• Now we will discuss how to convert a regular 
expression into NFA
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Regular Expressions to NFA (1)

For each kind of rexp, define an NFA

– Construct NFA for its
constituents        

– Notation: NFA for rexp M 
M

For :


For literal character a:
a

Two base cases
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Regular Expressions to NFA (2)

For A  B

A B


For A | B

A

B








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Regular Expressions to NFA (3)

For A*

A






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Example of RegExp NFA

Consider the regular expression

(1|0)*1

The NFA is

1I J
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Example of RegExp NFA

Consider the regular expression

(1|0)*1

The NFA is

1
 





A G H I J
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Example of RegExp NFA

Consider the regular expression

(1|0)*1

The NFA is

1
 







 





A B

E

F

G H I J
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Example of RegExp NFA

Consider the regular expression

(1|0)*1

The NFA is

1

0
1

 







 





A B

C

D

E

F

G H I J

Can we do this systematically?



RegExp NFA: A two steps algorithm

Step 1: compile RE to AST

Step 2: walk over the AST and generate an NFA

RE: (a(b)*)*

69
b

*

a

seq

*
AST: 



Another example of AST for a RE

(ac|de*)+

ca

seq

alt

*d

seq

+

e



SDT to obtain AST of an RE 

%ignore /\n+/

%%

// A regular expression grammar

R ->  'a'        %{ return ('prim', n1.val) }%

| R R          %{ return ('seq', n1.val, n2.val) }%

| R '*'        %{ return ('star', n1.val)        }%

| R '|' R      %{ return ('alt', n1.val, n3.val) }%

| '(' R ')'    %{ return n2.val }%

;

71

Exercise:
check for ambiguity



Final step: compiling RE to NFA

Recursively rewrite AST into automaton 

72

(1|0)*1

01

alt

*

seq

1

1

0









B

C

D

E

F

G



Final step: compiling RE to NFA

Recursively rewrite AST into automaton 

73

1

0







 





A B

C

D

E

F

G H

(1|0)*1

01

alt

*

seq

1



Final step: compiling RE to NFA

Recursively rewrite AST into automaton 

74

1

0
1

 







 





A B

C

D

E

F

G H I J

(1|0)*1

01

alt

*

seq

1



SDT that visualizes RE-to-NFA translation

SDT can translate (1|0)*1 not only to RE but 
also to a dotty file that visualizes this RE.  
Dotty file:

digraph G {f7 -> f8 [label="a"]

f7 [label=""]

f8 [label=""]f9 -> f10 [label="b"]

f9 [label=""]

f10 [label=""]

f11 -> f9 [label=""]

f10 -> f12 [label=""]

f11 -> f12 [label=""]

f12 -> f11 [label=""]

f11 [label=""]

f12 [label=""]f13 -> f14 [label="c"]

f13 [label=""]

f14 [label=""]

f15 -> f13 [label=""]

f14 -> f16 [label=""]

f15 -> f16 [label=""]

f16 -> f15 [label=""]

f15 [label=""]

f16 [label=""]

f17 -> f11 [label=""]

f17 -> f15 [label=""]

f12 -> f18 [label=""]

f16 -> f18 [label=""]

f17 [label=""]

f18 [label=""]

f19 -> f7 [label=""]

f8 -> f17 [label=""]

f18 -> f20 [label=""]

f19 [label=""]

f20 [label=""]} 75



Answer to 2nd challenge question

Q: Give a JavaScript scenario where tokenizing 
depends on the context of the parser.  That is, lexer
cannot tokenize the input entirely prior to parsing.

A: In this code fragment, / / could be div’s or a regex:   

e / f / g

76



Implementation via backtracking



Implementation with btracking via coroutines

Step 1: Use SDT to compile RE to AST

Step 2:  Walk over the AST and generate code that 
invokes a regex library

RE: (a(b)*)*

AST: 

Generated code: 

match(s,star(seq(prim(“a”),star(prim(“b”)))))
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Generate code w/out intermediate AST

%ignore /\n+/

%%

// A regular expression grammar

R ->  'a'               %{ return 'prim("%s")' % n1.val           %}

| R R %dprec 2  %{ return 'seq(%s,%s)' % (n1.val, n2.val) %}

| R '*'     %dprec 1  %{ return 'star(%s)' % n1.val %}

| R '|' R   %dprec 3  %{ return 'alt(%s,%s)' % (n1.val,n3.val)  %}

| '(' R ')'           %{ return n2.val %}

;
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Regex matching

The goal is to decide if the regex matches a string.

Pattern  ("abc"|"de")."x" can be defined as follows:

patt = seq(alt(prim("abc"),prim("de")),prim("x"))

which effectively encodes the pattern’s AST.

seq, alt, prim are implemented with coroutines.
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And now the main match routine

def match(S,patt) {

def m=coroutine.wrap(lambda(){ patt(S,0) }) 

for (pos in m) {

if (pos==len(S)) {

return true

}

}

return false

}

match(“de”, alt(prim("abc"),prim("de"))) 

--> true
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Regex matching with coroutines

-- matching a string literal (primitive goal)

def prim(str) { 

lambda(S,pos) {

def len = len(str)

if (sub(S,pos,pos+len-1)==str) {

yield(pos+len)

}   }   }
-- alternative patterns (disjunction)

def alt(patt1,patt2) {

lambda(S,pos) { patt1(S,pos); patt2(S,pos) } 

}   

-- sequence of sub-patterns (conjunction)

def seq(patt1,patt2) { 

lambda(S,pos) { 

def btpoint=coroutine.wrap(function(){ patt1(S,pos) })

for npos in btpoint { patt2(S,npos) } 

}   } 82



Semantic differences between 
regexes and REs



Semantic differences in regexes and REs

It seems that regexes and REs are equivalent

just like DFAs and NFAs are equivalent

This is not true in all situations

even if you restrict yourself to |, *, .

ie you omit back-references \1, \2, …

We will see that a pattern such as a|ab* can be 
interpreted differently by REs and regexes
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First, performance differences

Regexes are implemented with backtracking

This regex requires exponential time to discover that it 
does not match the input string X==============.

regex: X(.+)+X

REs are implemented by translation to NFA

NFA may be translated to DFA.

Resulting DFA requires linear time, ie reads each char once
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Now, the String Match Problem

Consider the problem of detecting whether a pattern 
(regex or RE) matches an (entire) string

match(string, pattern) --> yes/no

The regex and RE interpretations of any pattern do 
agree on this problem.

That is, both give same answer to this Boolean question

Example: X(.+)+X

It does not matter whether this regex matches the string 
X===X with X(.)(..)X or with X(.)(.)(.)X, assigning different 
values to the ‘+’ in the regex.  While there are many possible 
matches, all we care about is whether any match exists.
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Let’s now focus on when regex and RE differ

Can you think of a question that where they give a 
different answer?

Answer: find a substring
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Example from Jeff Friedl’s book 

Imagine you want to parse a config file:

filesToCompile=a.cpp b.cpp

The regex for this command line format:

[a-zA-Z]+=.*

Now let’s allow an optional \n-separated 2nd line:

filesToCompile=a.cpp b.cpp \<\n>

d.cpp e.h

We extend the original regex correspondingly:

[a-zA-Z]+=.*(\\\n.*)?

This regex does not match our two-line input.  Why?



What compiler textbooks don’t teach you

The textbook string matching problem is simple:

Does a regex r match the entire string  s?

– a clean statement suitable for theoretical study

– here is where regexes and FSMs are equivalent

In real life, we face the sub-string matching problem:

Given a string s and a regex r, find a substring in s matching r.

- tokenization is a series of substring matching problems



Substring matching: careful about semantics

Do you see the language design issues?

– There may be many matching substrings.  

– We need to decide which substring to return.

It is easy to decide where this substring should start:

– the matched substring should be the leftmost match

RE and regex differ in where the string should end:

- longest match, first match, shortest match, best match

- if best, how do we define “best”?



Where should the matched string end?

Declarative approach: longest of all matches

– conceptually, enumerate all matches and return longest

Operational approach: define behavior of *, | operators

e* match e as many times as possible while allowing the 

remainder of the regex to match (greedy semantics)

e|e select leftmost choice while  allowing remainder to match  

[a-zA-Z]+  = .* ( \\ \n .* )?

filesToCompile=a.cpp b.cpp \<\n> d.cpp e.h



These are important differences

We saw a non-contrived regex can behave differently

– personal story: I spent 3 hours debugging a similar regex

– despite reading the manual carefully

The (greedy) operational semantics of * 

– does not guarantee longest match (in case you need it)

– forces the programmer to reason about backtracking

It may seem that backtracking is nice to reason about

– because it’s local: no need to consider the entire  regex

– cognitive load is actually higher, as it breaks composition
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Where in history of RE did things go wrong?

It’s tempting to blame perl

– but the greedy regex semantics seems older

– there are other reasons why backtracking is used

Hypothesis 1:creators of re libs didn’t know that NFA

– can be the target language for compiling regexes

– finds all matches simultaneously (no backtracking)

– Can be implemented efficiently (convert NFA to DFA)

Hypothesis 2: their hands were tied

– Ken Thompson’s algorithm for re-to-NFA was patented

With backtracking came the greedy semantics

– longest match would be expensive (must try all matches)

– so semantics was defined greedily, and non-compositionally



Regular Expressions Concepts

• Syntax tree-directed translation (re to NFA)

• recognizers: tell strings apart

• NFA, DFA, regular expressions = equally powerful

• but \1 (backreference) makes regexes more pwrful

• Syntax sugar: e+ to e.e*

• Compositionality: be weary of greedy semantics

• Metacharacters: characters with special meaning
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Summary of DFA, NFA, REs

What you need to understand and remember

– what is DFA, NFA, regular expression

– the three have equal expressive power

– what is meant by the “expressive power”

– you can convert 
• RE  NFA  DFA

• NFA  RE 

• and hence also DFA  RE, because DFA is a special case of NFA

– NFAs are easier to use, more costly to execute
• NFA emulation O(S2)-times slower than DFA

• conversion NFADFA incurs exponential cost in space
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Puzzle 1: (An inefficient) Primality Test



Intermission: Answer to Primality Test puzzle

First, represent a number n as a unary string

7 == '1111111'

Conveniently, we'll use Python's * operator

str = '1'*n    # concatenates '1' n times

n not prime if str can be written as ('1'*k)*m, k>1, m>1

(11+)\1+ # recall that \1 matches whatever (11+) matches

Special handling for n=1.  Also, $ matches end of string

re.match(r'1$|(11+)\1+$', '1'*n) .group(1) 

Note this is a regex, not a regular expression

Regexes can tell apart strings that reg expressions can't
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What strings can we tell apart with RE?



Exercise

Write a RE or automaton that accepts a string over 
the alphabet { (, ) } iff the string has balanced 
parentheses:

(()(())) balanced

(()((())) not balanced

Can’t be done.  We need to count open left parens. 

Since the input can be arbitrarily large, we need a 
counter or a set of states that is unbounded in size.

Sadly, finite automata have only finite number of states.
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Expressiveness of RE recognizers

What does it mean to "tell strings apart"?

Or "test a string" or "recognize a language", 
where language = a (potentially infinite) set of strings

It is to accept only strings that have some property

- e.g., can be written as ('1'*k)*m, for some k>1, m>1

- or contain only balanced parentheses:  ((())()(()))
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Primality testing revisited

Why can't RE test if a string matches ('1'*k)*m,  k>1,m>1?

It may seems that 

('1'*k)*m,  k>1,m>1

is equivalent to 

(11+)(11+)+

Exercise: Find a string that matches the latter but 
does not match the former.
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