
1

Lecture 9: Grammars and SDT
Context-free grammars,
disambiguation,
syntax-directed translation

Ras Bodik
Alvin Cheung
Maaz Ahmad

Talia Ringer
Ben Tebbs

Hack Your Language!
CSE401 Winter 2016
Introduction to Compiler Construction

Announcements

Project proposal due this Wed

HW3 out today
– due this Sunday

PA3 out in two days
– be due in roughly 3 weeks

2

Announcements

Midterm exam in class on 2/10
– Covers everything including this week and HW3
– Closed book
– One letter-size sheet of handwritten notes (one sided)
– Previous exams on website
– Review session: Sunday 6-7pm EEB 115

3

Next two lectures will expand on the parser

parserPL desugarASTL AST-based interpreterASTT

parsingprogram text Syntax-directed
translationparse tree AST

grammar

Today

Parse tree
The result of parsing a string with a grammar

Ambiguities
handling grammars with ambiguous rules

Computations on parse trees
Compilation, Interpretation, Type Checking, Doc Layout

Attribute grammar
grammar where parse tree nodes have attributes

Syntax-directed evaluation
Evaluation of the attributes of a parse tree

[Multi-pass attribute grammars (for layout)]
5

Grammars and parse trees
HW3.1a

A grammar has four components

Example grammar:

E à n
| E + E
| E * E
| (E)

• Nonterminals:
• Start nonterminal:
• Terminals:
• Productions (rules):

8

A grammar has four components

Example grammar:

E à n
| E + E
| E * E
| (E)

• Nonterminals:
• Start nonterminal:
• Terminals:
• Productions (rules):

E

E
n, +, *, (,)

E à n, E à E + E, E à E * E, Eà(E)

Parse tree

Produced given a grammar and an input string
sometimes the parse tree is not built explicitly

represents the structure present in flat input strings

composed from productions used to derive the string

9

10

Parse tree example

Parser input: n(4), *, (, n(2), +, n(3),)

Parse tree:

E à n
| E + E
| E * E
| (E)

F leaves are tokens (terminals), internal nodes are non-terminals

n(4) * (n(2) + n(3))

E

E

E

E E

12

Another example of parse tree

Source string: if (x == y) { a=1; }
Tokenized: IF, LPAR, ID, EQ, ID, RPAR, LBR, ID, AS, INT, SEMI, RBR

Parse tree:

IF LPAR ID EQ ID RPAR LBR ID AS INT SEMI RBR

EXPR EXPR

STMT

BLOCK

STMT

Ambiguous Grammars
HW3.1b

Ambiguity

The shape of parse tree depends on the grammar

The grammar is designed so that the parse tree
reflects desired operator precedence and associativity

The arithmetic grammar we’ve seen permits multiple
parse trees, so this grammar does NOT capture
precedence, associativity

Example of multiple parse trees on next slide

15

Example of ambiguous grammar

16

E à E + E | n

Given input: 1 + 2 + 3:

E

E

1

E

EE +

2 3

+

E

E

3

E

EE +

1 2

+

+ is left associative

What is an ambiguous grammar?

Ambiguous grammar:

When a (any) string produces more than one parse tree

Why is this bad?

The meaning of the input is not defined

17

Disambiguation via Grammar Rewriting
HW3.1c

Rewriting

Rewrite the grammar into a unambiguous grammar
new grammar defines the same language (set of legal

strings) but eliminates undesirable parse trees

Example: Rewrite
E → E + E | E * E | (E) | n

into
E → E + T | T
T → T * n | n | (E)

Draw a few parse trees and you will see that new grammar
– enforces precedence of * over +
– enforces left-associativity of + and *

19

20

Parse tree with the new grammar

The int * int + int has ony one parse tree now

note that new nonterminals have been introduced

E

E

E E

E*

n +

nn

E

T

T n

T+

n

*

E

n

Usually, this grammar is written with E, T, F

21

E

T

FT

F
E

T

F

E

T

F

*
)

+

(

2

4

5

E à E + T | T
T à T * F | F
F à (E) | n

Exercise

E à E + T | T
T à T * F | F
F à (E) | n

Convince yourself that you cannot parse 2+3*4
to give + higher precedence than *

22

Some terminology

Language: set of strings
L(G) – strings generated by grammar G
L(N) – strings generated by non-terminal N

Left-recursive grammar: includes rule X à X …
generates left-associative expressions

Right-recursive grammar: includes rule X à … X
generates right-associative expressions

24

The Abstract Syntax Tree

a compact representation of the parse tree

26

AST is a compression of the parse tree

*

NUM(4) +

NUM(2) NUM(3)

n(4) * (n(2) + n(3))

E

E

E

E E

E

27

Another example
IF-THEN

==

ID ID

=

ID INT

IF LPAR ID EQ ID RPAR LBR ID AS INT SEMI RBR

EXPR EXPR

STMT

BLOCK

STMT

How to construct an AST?

By evaluating the parse tree! Key steps:

1. Extend nodes with attributes
Such as val attribute for expression nodes

2. Specify how attributes are computed from other attrs
These are assignments of the form
E1.val = E2.val + E3.val

3. Determine the evaluation order
How will these computations happen?
Bottom up, top down, or inorder?
(Most often, it’s bottom-up.)

Grammars with attributes are attribute grammars 28

Attribute Grammars

What are attribute grammars?

• Grammars with attributes (duh!)

• Grammars with attributes stored at each node
– With attribute values computed from other nodes

30

Two types of attributes

Synthesized: computed from children

Inherited: computed from parent (and siblings)

31

Attribute grammars

Applications of attribute grammars

– evaluate the input program P (interpret P)
– type check the program (look for errors before eval)
– construct AST of P (abstract the parse tree)

– generate code (which when executed, will evaluate P)
– compile (regular expressions to automata)

– document layout (compute positions, sizes of letters)
– programming tools (syntax highlighting)

32

33

An example attribute grammar (AG)

Idea: evaluate expressions by storing their values as attributes
Each node now comes with a “val” attribute

We now need to define rules for computing this attribute
E1 ::= E2 +	T													E1.val = E2.val + T.val
E	::=	T	 E.val = T.val
T1 ::=	T2 *	F	 T1.val = T2.val * F.val
T	 ::= F	 T.val = F.val
F	 ::= n F.val = n.val
F	 ::= (E)	 F.val = E.val

Is val an inherited or synthesized attribute?

34

An example attribute grammar (AG)

E1 ::= E2 +	T													E1.val = E2.val + T.val
E	::=	T	 E.val = T.val
T1 ::=	T2 *	F	 T1.val = T2.val * F.val
T	 ::= F	 T.val = F.val
F	 ::= n F.val = n.val
F	 ::= (E)	 F.val = E.val

E à E + T
| T

T à T * F
| F

F → n
| (E)

AG = grammar + “semantic rules”
rules show how to evaluate parse tree

35

Same AG in 401 parser notation

AG for evaluating an expression
%%
E -> E '+' T %{ return n1.val + n3.val }%

| T %{ return n1.val }%
;

T -> T '*' F %{ return n1.val * n3.val }%
| F %{ return n1.val }%
;

F -> /[0-9]+/ %{ return int(n1.val) }%
| '(' E ')' %{ return n2.val }%
;

Compare this with our interpreter

36

Another AG: Compute type of expression + typecheck

E -> E + E if ((E2.val == INT) and (E3.val == INT))
then E1.val = INT
else E1.val = ERROR

E -> E and E if ((E2.val == BOOL) and (E3.val == BOOL))
then E1.val = BOOL

else E1.val = ERROR
E -> E == E if ((E2.val == E3.val) and

(E2.val != ERROR))
then E1.val = BOOL
else E1.val = ERROR

E -> true E.val = BOOL
E -> false E.val = BOOL
E -> n E.val = INT
E -> (E) E1.val = E2.val

Type check example

37

E

5 2

E==

7
+

E

E EINT

E -> n
E.val = INT

INT

E -> E + E
if ((E2.val == INT) and (E3.val == INT))
then E1.val = INT
else E1.val = ERROR

INT

E -> E == E
if ((E2.val == E3.val) and (E2.val != ERROR))
then E1.val = BOOL
else E1.val = ERROR

INT

BOOL

Type check example

38

E

5 2

E==

true
+

E

E EINT INT

INT

E -> E == E
if ((E2.val == E3.val) and (E2.val != ERROR))
then E1.val = BOOL
else E1.val = ERROR

BOOL

E -> true
E.val = BOOL

ERROR

Another AG needing top-down pass

For each leaf node in parse tree, compute distance
from the root:

S à N
N1 à leaf

| N2 N3

Let’s add a dist attribute

39

N

leaf leaf

N

leaf

N

N N

S

Another AG needing top-down pass

For each leaf node in parse tree, compute distance
from the root:

S à N
N1 à leaf

| N2 N3

What kind of attribute is dist?
40

N

leaf leaf

N

leaf

N

N N

S

N.dist = 0
leaf.dist = N1.dist + 1
N2.dist = N1.dist + 1
N3.dist = N1.dist + 1

Syntax-directed translation
evaluate parse tree (to produce a value, AST, …)

41

Syntax-directed translation (SDT)

• Process of converting source language into target
driven by actions associated with each rule

• We have seen various examples earlier with
attribute grammars

• We have also seen this earlier with our bytecode
compiler (PA2)

42

43

When is syntax directed translation performed?

Option 1: parse tree built explicitly during parsing
– after parsing, parse tree is traversed, rules are evaluated
– simpler, less efficient, but simpler; used in the 401 parser
– Necessary when the tree must be traversed multiple times

Option 2: parse tree never built
– rules evaluated during parsing on a conceptual parse tree
– more common in practice
– we’ll see this strategy in HW3 (on recursive descent parser)

Let’s construct an AST from parse tree

• We will use SDT for this purpose

• We will build the AST bottom up

• Each node will have a val attribute that stores the
AST we have constructed for its descendants

• Steps:
– Define the grammar
– Define actions
– Associate actions with production rules 44

45

An AG for AST building

F à int F.val = new IntLitNode(int.value)

F à (E) F.val = E.val

T1 à T2 * F T1.val = new TimesNode(T2.val, F.val)

T à F T.val = F.val

E1 à E2 + T E1.val = new PlusNode(E2.val, T.val)

E à T E.val = T.val

46

Example: build AST for 2 * (4 + 5)

E

T

FT

F

T

F

E

T

F

*

)

+

(
n (2)

n (5)

n (4)

F à int

F.val = new IntLitNode(int.value)

4

E

47

Example: build AST for 2 * (4 + 5)

E

T

FT

F

T

F

E

T

F

*

)

+

(
n (2)

n (5)

n (4)

T à F
T.val = F.val

4

E

48

Example: build AST for 2 * (4 + 5)

E

T

FT

F

T

F

E

T

F

*

)

+

(
n (2)

n (5)

n (4)

E à T
E.val = T.val

4

E

49

Example: build AST for 2 * (4 + 5)

E

T

FT

F

T

F

E

T

F

*

)

+

(
n (2)

n (5)

n (4)

T à F
T.val = F.val

5

E

50

Example: build AST for 2 * (4 + 5)

E

T

FT

F

T

F

E

T

F

*

)

+

(
n (2)

n (5)

n (4)

E1 à E2 + T
E1.val = new PlusNode(E2.val, T.val)

4 5

E

+

51

Example: build AST for 2 * (4 + 5)

E

T

FT

F

T

F

E

T

F

*

)

+

(
n (2)

n (5)

n (4)

F à (E)

F.val = E.val

4 5

E

+

52

Example: build AST for 2 * (4 + 5)

E

T

FT

F

T

F

E

T

F

*

)

+

(
n (2)

n (5)

n (4)

T à F
T.val = F.val

E

2

53

Example: build AST for 2 * (4 + 5)

E

T

FT

F

T

F

E

T

F

*

)

+

(
n (2)

n (5)

n (4)

T1 à T2 * F
T1.val = new TimesNode(T2.val, F.val)

4 5

E

+2

*

54

Example: build AST for 2 * (4 + 5)

E

T

FT

F

T

F

E

T

F

*

)

+

(
n (2)

n (5)

n (4)

E à T
E.val = T.val

4 5

E

+2

*

“Multi-pass” Attribute Grammars

55

More than one traversal

When is a bottom-up pass insufficient to eval all attrs?

When an attr depends on an parent node attribute:
top-down pass is needed

… or when it depends on a left sibling node attribute:
in-order pass is needed

Pass = tree traversal
bottom up (postorder), top-down (preorder), inorder

56

Summary

• Four elements of a grammar

• Parse trees from input source code

• Handling ambiguities by grammar rewriting

• Attribute grammars

• Constructing ASTs using Syntax-Driven Translation

57

Multi-pass AG for simple math layout

Want to write

x sub i sub j

and obtain

𝑥"#

58

Multi-pass AG for Box layout

Want to write

(x sub i) sub j

and obtain

𝑥"$

59

The grammar

B à B1 B2 | B1 sub B2 | (B1) | text

60

Attributes

What attributes do we need?

61

The AG

S à B

B à B1 B2

B à B1 sub B2

B à (B1)

B à text
62

The AG

63

The passes

Example x sub i sub j

64

Evaluation of x sub i sub j

65

