
1

Ras Bodik
Alvin Cheung
Maaz Ahmad

Talia Ringer
Ben Tebbs

Lecture 4: Iterators and
Coroutines
Comprehensions
Lazy Iterators
Coroutines

Hack Your Language!
CSE401 Winter 2016
Introduction to Compiler Construction

Announcements

Sign up on Piazza if you haven’t

Makeup lecture on Friday 2:30pm-3:50pm
– Same room (here!)
– Will be audio recorded

Section tomorrow

Permanent OHs posted on website

2

Today

• Comprehensions
• Composing iterators
• Lazy iterators
• Intro to coroutines

3

Reading

Required:
Chapter on coroutines from the Lua textbook
(http://www.lua.org/pil/)

Recommended:
Python generators are coroutines, actually

Fun:
More applications of coroutines are in Revisiting Coroutines

4

Our abstraction stack is growing nicely

comprehensions
for + iterators

if + while
functions

5

Comprehensions

6

Comprehensions

A map operation over anything that is iterable.

[toUpperCase(v) for v in elements([“a”,“b”])]
-->
[“A”, “B”]

General syntax:
[E1 for ID in E2]

Can E1, E2 be comprehension expressions?
Where is variable ID visible? In E1, E2 or both?

7

Comprehensions

Desugaring this example:

[toUpperCase(v) for v in elements(list)]
--->

$1 = []
for v in elements(list) { append($1, toUpperCase(v)) }
$1

8

Your homework: write a general desugar rule

Must work work on nested comprehensions

mat = [[1, 2, 3], // 2D matrix
[4, 5, 6],
[7, 8, 9],

]
print [[row[i] for row in mat]

for i in [0, 1, 2]
]

--> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]

"To avoid apprehension when nesting list
comprehensions, read from right to left" 9

Compositions of iterators

10

Iterators can be composed

A simple example: convert characters to uppercase
def lst = [“a”, “b”, “c”]
for c in toUpCsIt(asArray(lst)) {

print c
}

Exercise 1. Write toUpCsIt
function toUpCsIt(it) {

function () {
def c = it()
if (c) { toUpperCase(c) }
else { null }

} } (see note on next slide) 11

Modularity via high-order functions

Instead, use map (functional programming); a list
comprehension; or the pipes-and-filters pattern. In
either case, no code is specific to ToUpperCase:

1. map(toUpperCase, lst)
2. [toUpperCase(c) for c in lst]
3. consumer(filter(toUpperCase, producer()))

12

Lazy iterators

13

A motivating example

Find the best first move in Scrabble given some time:

s = [‘a‘,‘f‘,...] // 7 letter tiles
for p in permgen(s) {

for s in subsets(p) {
if (legalWord(s, wordDict)) {

// check score of s
// exit when out if time

}
}

}

14

Print all permutations of a list

def permgen(a,n=len(a)) {
if (n <= 1) {
print(a)

} else {
for i in iter(n) {

a[n],a[i] = a[i],a[n]
permgen(a,n-1)
a[n],a[i] = a[i],a[n]

} } }
permgen(["a","b","c"])

15

[a, b, c], 3

[c, b, a], 2

[c, b, a], 2

[b, c, a], 1

[b, c, a], 1

“b c a”

[c, b, a], 1

[c, b, a], 1

“c b a”

Now let’s try to wrap permgen in an iterator

We want to be able to write this code

for p in permIterator(list) {
if (condition(p))

print p // print a subset of permutations
}

16

Don’t need to iterate over all permutations

We may want to print just the first legal word

def s = legalWord(permIterator(ltrs), myDict)
def word = s()
if (word) print word

legalWord may iterate only over some permutations,
so let’s not compute and store all O(2n) of them in a
list. Let’s compute them lazily, as needed by the caller
of the permutation iterator

17

An incorrect attempt at permgen iterator

def permIterator(lst) {
def permgen(a,n=len(a)) {

if (n = 1) {
__________ // was print(a)

} else {
for i in iter(n) {

a[n],a[i] = a[i],a[n]
permgen(a,n-1)
a[n],a[i] = a[i],a[n]

} } }
function () { permgen(lst) } // the iterator

}
18

What is our stumbling block?

The call stack in for p in permIterator(lst) {S(p)}
when permgen attempts to pass a permutation to for:

inside while loop
iterator
permgen(n)
…
permgen(1)

Why can’t permgen pass the permutation to iterator?
- it would need to return all the way to top of recursion
- this would force it to lose all context
- context = the value of i for each recursion level

19

Solution and lessons

Rewriting permgen to be resumable
Replacing recursion with a loop forces us to maintain the
context (a distinct copy of i for each level of recursion).

The code is significantly harder to write and read.

20

We need something like a goto

Idea: Jump from permgen to the while loop and back,
preserving permgen context on its call stack

Two execution contexts, each with own stack:

21

permgen call stack
permgen(n)
…
permgen(1)
“return” to while

while call stack
inside while loop
iter-function
“call” permgen

Coroutines

22

Coroutines == cooperating “threads”

Cooperating =
– one thread of control (one Program Counter)
– coroutines themselves decide when control is

transferred between them
• as opposed to an OS scheduler deciding when to preempt the

running thread and transfer control (as in timeslicing)
• hence also known as “green threads”

– transfer done with a yield statement

many flavors of coroutines exist
We will cover Lua’s asymmetric coroutines

23

Asymmetric Coroutines

Asymmetric: notion of master vs. slave
symmetric coros. can be implemented on top of asymmetric

Benefits of asymmetric coroutines:

- easier to understand for the programmer because from
the master the transfer looks like an ordinary call

- easier to implement (you’ll do it in PA2)

24

Asymmetric Coroutines

Three constructs:

co=create_coroutine(body) create a coroutine
co is a handle

resume(co, arg) call/resume a
coroutime

yield(arg) return to master,
who can resume

Body is a closure
25

Example (no values passed)

26

var co = create_coroutine(
function(){

print(1)
yield
print(2)
yield
print(3)

}
)
resume(co) -->
resume(co) -->
resume(co) -->
resume(co) -->

Body of coroutine (a closure)

Example (yield passes values to master)

27

var co = create_coroutine(function(){
yield(1)
yield(2)
yield(3)

})

print(resume(co)) -->
print(resume(co)) -->
print(resume(co)) -->
print(resume(co)) -->
resume(co) -->

Example (pass values to initial yield)

28

var co = create_coroutine(function(x){
print(x)
yield()

})

resume(co, 1) -->
resume(co) -->

Test yourself

29

var co = create_coroutine(function(x){
print("1", x)
print("2", yield())

})

resume(co, "hello") -->
resume(co, "world") -->

Iterator factory for permgen

30

var permgen(a, n=len(a)) {
if (n <= 1) { yield(a) } /* used to be print(a) */
else {

for i=1 to n {
a[n],a[i] = a[i],a[n]
permgen(a,n-1)
a[n],a[i] = a[i],a[n]

} } }
var permIterator(lst) {

var co = coroutine(
function(l) { permgen(l); null }

)
function () { resume(co, lst) }

}

This is known as the wrap pattern in Lua

Applications of coroutines

31

What can we do with coroutines

Define control abstractions impossible with functions:
lazy iterators

push or pull producer-consumer patterns

bactracking

regexes

exceptions

32

We will see some of these in lecture and PA

Stackful vs. stackless coroutines

39

Python generators

Python generators are coroutines with a limitation:

yield must occur in the body of the coroutine

That is, the call stack must be empty

40

Consumer-Producer Pattern

43

Create a dataflow on streams

Process the values from permgen

We can apply operations :
for v in toUppercaseF(permgen(...)) { process(v) }

How to create “filters” like toUpperCaseF?

44

A filter element of the pipeline

var filter(ant, f)
var co = coroutine(function() {

while (True) {
--resume antecessor to obtain value
var x=ant()
-- yield transformed value
yield(f(x))

} }
function() { resume(co,0) }

}
f1 = function(x) { ... }
f2 = function(x) { ... }
consumer(filter(filter(producer(), f1), f2)) 45

How to implement such pipelines

Producer-consumer patter: often a pipeline structure
producer à filter à consumer
All we need to say in code is

consumer(filter(producer()))

Producer-driven (push) or consumer-driven (pull)
This decides who initiates resume(). In pull, the consumer
resumes to producer who yields datum to consumer.

Each of producer, consumer, filter is a coroutine
Who initiates resume is the main coroutine.
In for x in producer, the main coroutine is the for loop.

46

Summary

Coroutines allow powerful control abstractions
iterators but also backtracking, which we’ll cover soon

You will implement coroutines in PA2
we’ll describe the implementation next time

47

What you need to know

• Iterators
• Programming with coroutines
• Write push and pull producer-consumer patterns

48

Acknowledgements

Our course language, including its coroutines, are
modeled after Lua, a neat extensible language.

Many examples in this lecture come from
Programming in Lua, a great book. Read the 1st edition
on the web but consider buying the 3rd edition.

http://www.lua.org/pil/

Coroutine examples are from Revisiting Coroutines.

49

