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Announcements

Sign up on Piazza if you haven’t

Makeup lecture on Friday 2:30pm-3:50pm
– Same room (here!)
– Will be audio recorded 

Section tomorrow

Permanent OHs posted on website
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Today

• Comprehensions
• Composing iterators
• Lazy iterators
• Intro to coroutines
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Reading 

Required:
Chapter on coroutines from the Lua textbook
(http://www.lua.org/pil/)

Recommended:
Python generators are coroutines, actually

Fun:
More applications of coroutines are in Revisiting Coroutines
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Our abstraction stack is growing nicely

comprehensions
for + iterators

if + while
functions
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Comprehensions
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Comprehensions

A map operation over anything that is iterable.  

[toUpperCase(v) for v in elements([“a”,“b”])]  
-->
[“A”, “B”]

General syntax:
[E1 for ID in E2] 

Can E1, E2 be comprehension expressions?
Where is variable ID visible?  In E1, E2 or both?
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Comprehensions

Desugaring this example:

[toUpperCase(v) for v in elements(list)]  
--->  

$1 = []
for v in elements(list) { append($1, toUpperCase(v)) } 
$1
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Your homework: write a general desugar rule

Must work work on nested comprehensions

mat = [[1, 2, 3],  // 2D matrix
[4, 5, 6],
[7, 8, 9],

]
print [[row[i] for row in mat] 

for i in [0, 1, 2]
]

--> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]

"To avoid apprehension when nesting list 
comprehensions, read from right to left" 9



Compositions of iterators
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Iterators can be composed

A simple example: convert characters to uppercase
def lst = [“a”, “b”, “c”]
for c in toUpCsIt(asArray(lst)) {

print c
}

Exercise 1.  Write toUpCsIt
function toUpCsIt(it) {

function () { 
def c = it()
if (c) { toUpperCase(c) }
else { null } 

}  }                      (see note on next slide) 11



Modularity via high-order functions

Instead, use map (functional programming); a list 
comprehension; or the pipes-and-filters pattern.  In 
either case, no code is specific to ToUpperCase:

1. map(toUpperCase, lst)
2. [toUpperCase(c) for c in lst]
3. consumer(filter(toUpperCase, producer()))
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Lazy iterators
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A motivating example

Find the best first move in Scrabble given some time:

s = [‘a‘,‘f‘,...]       // 7 letter tiles
for p in permgen(s) {

for s in subsets(p) {
if (legalWord(s, wordDict)) {

// check score of s 
// exit when out if time 

}
}

}
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Print all permutations of a list

def permgen(a,n=len(a)) {
if (n <= 1) {
print(a)

} else {
for i in iter(n) {

a[n],a[i] = a[i],a[n]
permgen(a,n-1)
a[n],a[i] = a[i],a[n]

} } }
permgen(["a","b","c"])
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[a, b, c], 3

[c, b, a], 2

[c, b, a], 2

[b, c, a], 1

[b, c, a], 1

“b c a”

[c, b, a], 1

[c, b, a], 1

“c b a”



Now let’s try to wrap permgen in an iterator

We want to be able to write this code

for p in permIterator(list) { 
if (condition(p)) 

print p   // print a subset of permutations
}
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Don’t need to iterate over all permutations

We may want to print just the first legal word

def s = legalWord(permIterator(ltrs), myDict)
def word = s()
if (word) print word

legalWord may iterate only over some permutations, 
so let’s not compute and store all O(2n) of them in a 
list. Let’s compute them lazily, as needed by the caller 
of the permutation iterator
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An incorrect attempt at permgen iterator

def permIterator(lst) {       
def permgen(a,n=len(a)) {

if (n = 1) {
__________    // was print(a)

} else {
for i in iter(n) {

a[n],a[i] = a[i],a[n]
permgen(a,n-1)
a[n],a[i] = a[i],a[n]

}    }    }    
function () { permgen(lst) }  // the iterator

}
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What is our stumbling block?

The call stack in for p in permIterator(lst) {S(p)}
when permgen attempts to pass a permutation to for:

inside while loop
iterator
permgen(n)  
…
permgen(1)

Why can’t permgen pass the permutation to iterator?
- it would need to return all the way to top of recursion
- this would force it to lose all context
- context = the value of  i for each recursion level
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Solution and lessons

Rewriting permgen to be resumable
Replacing recursion with a loop forces us to maintain the 
context (a distinct copy of i for each level of recursion).  

The code is significantly harder to write and read.
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We need something like a goto

Idea: Jump from permgen to the while loop and back,
preserving permgen context on its call stack

Two execution contexts, each with own stack:

21

permgen call stack
permgen(n)
…
permgen(1)
“return” to while

while call stack
inside while loop
iter-function
“call” permgen



Coroutines
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Coroutines == cooperating “threads”

Cooperating = 
– one thread of control (one Program Counter)
– coroutines themselves decide when control is 

transferred between them 
• as opposed to an OS scheduler deciding when to preempt the 

running thread and transfer control (as in timeslicing)
• hence also known as “green threads”

– transfer done with a yield statement

many flavors of coroutines exist
We will cover Lua’s asymmetric coroutines
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Asymmetric Coroutines

Asymmetric: notion of master vs. slave
symmetric coros. can be implemented on top of asymmetric

Benefits of asymmetric coroutines:

- easier to understand for the programmer because from 
the master the transfer looks like an ordinary call

- easier to implement (you’ll do it in PA2)
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Asymmetric Coroutines

Three constructs:

co=create_coroutine(body) create a coroutine
co is a handle

resume(co, arg) call/resume a 
coroutime

yield(arg)        return to master, 
who can resume

Body is a closure
25



Example (no values passed)
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var co = create_coroutine(
function(){

print(1)
yield
print(2)
yield
print(3)

}
)
resume(co) --> 
resume(co) --> 
resume(co) --> 
resume(co) --> 

Body of coroutine (a closure)



Example (yield passes values to master)
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var co = create_coroutine(function(){
yield(1)
yield(2)
yield(3)

})

print(resume(co)) -->
print(resume(co)) --> 
print(resume(co)) --> 
print(resume(co)) --> 
resume(co) -->



Example (pass values to initial yield)
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var co = create_coroutine(function(x){
print(x)
yield()

})

resume(co, 1) -->
resume(co) -->



Test yourself
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var co = create_coroutine(function(x){
print("1", x)
print("2", yield())

})

resume(co, "hello") -->
resume(co, "world") -->



Iterator factory for permgen
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var permgen(a, n=len(a)) {
if (n <= 1) { yield(a) } /* used to be print(a) */
else {

for i=1 to n { 
a[n],a[i] = a[i],a[n]
permgen(a,n-1)
a[n],a[i] = a[i],a[n]

} } }
var permIterator(lst) {

var co = coroutine( 
function(l) { permgen(l); null } 

)
function () { resume(co, lst) }

}

This is known as the wrap pattern in Lua



Applications of coroutines

31



What can we do with coroutines

Define control abstractions impossible with functions:
lazy iterators

push or pull producer-consumer patterns

bactracking

regexes

exceptions
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We will see some of these in lecture and PA 



Stackful vs. stackless coroutines
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Python generators

Python generators are coroutines with a limitation:

yield must occur in the body of the coroutine

That is, the call stack must be empty
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Consumer-Producer Pattern
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Create a dataflow on streams

Process the values from permgen

We can apply operations :
for v in toUppercaseF(permgen(...)) { process(v) }

How to create “filters” like toUpperCaseF?
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A filter element of the pipeline

var filter(ant, f)
var co = coroutine(function() {

while (True) { 
--resume antecessor to obtain value
var x=ant()
-- yield transformed value
yield(f(x))

}    }
function() { resume(co,0) }

}
f1 = function(x) { ... }
f2 = function(x) { ... }
consumer(filter(filter(producer(), f1), f2)) 45



How to implement such pipelines

Producer-consumer patter: often a pipeline structure
producer à filter à consumer
All we need to say in code is 

consumer(filter(producer()))

Producer-driven (push) or consumer-driven (pull)
This decides who initiates resume().  In pull, the consumer 
resumes to producer who yields datum to consumer.

Each of producer, consumer, filter is a coroutine
Who initiates resume is the main coroutine.  
In for x in producer, the main coroutine is the for loop.
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Summary

Coroutines allow powerful control abstractions
iterators but also backtracking, which we’ll cover soon

You will implement coroutines in PA2
we’ll describe the implementation next time
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What you need to know

• Iterators
• Programming with coroutines
• Write push and pull producer-consumer patterns
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Acknowledgements

Our course language, including its coroutines, are 
modeled after Lua, a neat extensible language.

Many examples in this lecture come from 
Programming in Lua, a great book.  Read the 1st edition 
on the web but consider buying the 3rd edition.

http://www.lua.org/pil/

Coroutine examples are from Revisiting Coroutines.
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