
1

Hack Your Language!
Introduction to Compiler Construction
CSE401 Winter 2016

Lecture 1: Abstractions

What is a programming language.
Why you will write a few in your life.
Why you will learn many.

Ras Bodik
Alvin Cheung
Maaz Ahmad

Talia Ringer
Ben Tebbs

Your course staff

2

Ras Mazz TaliaBen Alvin

Ras Bodik

3

Started at UW in 2015 after 12 years at UC Berkeley
where a version of this course was developed.

nine week-long projects

together built a browser
– parser generator
– Lua interpreter
– layout engine
– reactive programming

available as extra credit work Best Project and Fastest Parser winners in “yellow jerseys”

Alvin Cheung

4

Guess which one he is!

From ACM Spring BBQ 15

Trusty TAs

Maaz Bin Safeer Ahmad
Talia Ringer
Ben Tebbs

5

Why are we here?
great era again for programming languages

2:33

Explosion of industrial languages

7

Apple Swift, OpenCL
Facebook Hack, React

Google Go, Dart, Angular, GWT, MapReduce
Intel Ct, Cilk1

Microsoft C#, F#, Rx
Mozilla JavaScript2, Rust, asm.js
nVidia CUDA

Wolfram Wolfram
Yahoo Hadoop

1acquired; 2Netscape actually

Explosion of academic languages

8

EPFL Scala
Northeastern, Utah,

Brown, …
Racket

Edinburgh Haskell
CMU, ML, O’Caml

MIT Julia, Scratch
Stanford D3
Berkeley Spark

Explosion of hobby languages

9

Yukihiro Matsumoto Ruby
John Resig jQuery

Walter Bright, Andrei Alexandrescu D
Rich Hickey Clojure

your name here the next big thing

Why are we seeing this growth now?

Unprecedented activity since forefather languages
FORTRAN, ALGOL, Smalltalk, APL, Lisp, Simula (60/70s)

What problems are addressed by recent languages?
Your answers:

10

Recent languages were truly revolutionary

without JavaScript, internet would be just hypertext

MapReduce enabled parallel programming in the
cloud

CUDA made it possible to productively program GPUs
11

à

We now want our cake and eat it, too

Before:
– performance (eg C/C++) or
– correctness (eg Java) or
– productivity (eg Python)

Today:
Productivity and correctness:

Hack (Facebook): gradual typing, allows adding static type
annotations to the program

Performance and correctness:
Rust (Mozilla): C++ performance with strong static type safety
(prevent security holes) 12

Small, domain-specific langauges

The chief subject of this course

Languages created to address a problem

Abstractions design for a domain of programs

Examples:
text processing with regular expressions
signal processing
math
etc 13

What graduates of our course have done

14

Peter designed trans-compiler to build cross-platform
projects; took advantage of Haskell to build a
scalable concurrent system; DSL for mobile apps

Compiler-style vibrant industrial projects

Industry not only designs new languages. Tons of
interesting projects on new compilers and
programmer tools.

• LLVM compiler at Apple
• V8 virtual machine at Google
• Multilingual VM at Oracle
• And many more at Mozilla, Intel, Microsoft, …

15

Abstractions
the building blocks of systems

2:38

Hardware abstraction: unix file descriptors

• Abstract all input / output resources

• Representation: non-negative integers in C
• Common functionalities:

– open / close
– read / write / seek

• Compositional?

17

Tapes
Text terminals
Pipes
…

Software abstraction: SQL

• Abstract all data structures used to implement DB
– Heap files
– B-trees

• Representation: relations (think spreadsheets)
• Common functionalities:

– Create / update / delete relations
– Create / read / update / delete records from relations

• Compositional:
– Can combine multiple relations together

18

Cool abstractions for new problems
or why you will develop a new language

2:43

1. You work in a little web search company

First you add a calculator to the search engine

Then you remember cs164 and add unit conversion …

… allowing the humanity to settle silly bar bets such as:
How long can a brain run on energy from half dozen beers?

20

2. Then you work in a browser startup

You observe JavaScript programmers and take pity. Instead of

var nodes = document.getElementsByTagName('a');
for (var i = 0; i < nodes.length; i++) {

var a = nodes[i];
a.addEventListener('mouseover', function(event) { event.target.style.backgroundColor=‘orange'; }, false);
a.addEventListener('mouseout', function(event) { event.target.style.backgroundColor=‘white'; }, false);

}

you let them be concise, abstracting node iteration, and plumbing

jQuery('a').hover(function() { jQuery(this).css('background-color', 'orange'); },
function() { jQuery(this).css('background-color', 'white'); });

jQuery was developed by John Resig, now at Mozilla

21

3. Or you write visual scripting for musicians

Allowing non-programmers produce interactive music
by “patching” visual metaphors of electronic blocks:

Max/MSP was created by Miller Puckette and is now developed by Cycling ’74.
22

4. Spark: raise the Hadoop abstraction level

Write data processing applications quickly
in Java, Scala or Python

Spark offers over 80 high-level operators
Spark programs mapped to parallel Hadoop programs

23

More examples of how 401 will help you

24

5. rfig, language for slide presentations (Percy Liang)
6. Valgrind, a tool for finding memory leaks
7. Roll your own make/ant in Python (Bill McCloskey)
8. Ruby on Rails (a language on top of Ruby)
9. Custom scripting languages (eg for testing)
10. Custom code generators (eg for new hardware)

Sample of 401 independent final projects

NAtural LAnguage in the Shell
users express bash commands using natural language

Langauge for Autograder authoring
checks for correct sequence of calls to the OS

Algorithm visualization
minimizing the changes to the algorithm

Syncing JS objects via the cloud
In the presence of asynchronous updates

25

Abstractions in the D3 visualization language
and introduction to PA1

2:48

10. d3 for data visualization

27…
d3.js was developed by Mike Bostock (now NY Times)

PA1: the first programming assignment in 401

Visualization of programming languages
x: birth year of the language
y: popularity measured as # repositories created

We want to hide/show languages based on attributes
Eg, functional, procedural

Rescale the x, y axis as languages (dis)appear
animate the languages during rescaling

28

PA1: Scatterplot with animations

29https://www.youtube.com/watch?v=qX-dM3OhaxM

D3 gallery (https://github.com/mbostock/d3/wiki/Gallery)

30

Abstractions and operations that we need

• Visual elements (circles, bars, lines)
• Data (whose values influence visual elements)
• Mapping between data and visual elements
• Changing data on the fly
• … and correspondingly changing visual elements

31

D3’s minimalistic idea

Work directly with the browser’s visual elements
e.g. SVG circles and rectangles,
organized in the browser DOM tree

Bind data directly to these browser elements!
Each circle stores the datum that it visualizes

The selection type is the key abstraction
selection: a simple list of DOM nodes (visual elements)
to name a selection, reuse CSS selectors

32

Let’s explore the selection abstraction

Based on the excellent tutorial by Mike Bostock:
Three Little Circles: http://bost.ocks.org/mike/circles/

33

Three circles specified as “declarative data”

34

D3 offers programmatic manipulation of circles

35

Anonymous functions per element

36

Binding Data

37

Visual appearance from bound data

38

Entering elements

39

Visually

40

Removing elements

41

Pattern: selectAll + data + enter + append

42

Intermission
We’ll show here videos, demos, puzzles

demonstrating benefits of good programming languages

3:08

Guitair Zeros, a band enabled by Max/MSP

44

Recall that Max/MSP is a high-level language for musicians:
Live music synthesis controlled from MIDI

https://www.youtube.com/watch?v=uxzPCt7Pbds

Course logistics
see the course web page for more info

3:14

Redesign of the classical CSE401

Not about the usual compiler.

The new 401 will be about:
a) foundations of programming languages
b) but also how to design your own languages
c) how to implement them
d) and about PL tools, such as analyzers and bug finders
e) and also about some classical C.S. algorithms.

This will be a challenging course
but you’ll receive staff support

46

The HW + PA pattern

Homeworks reinforce concepts for programming
assignments.

– PA in teams of three (except PA1)
– HW independent

The PA+HW pattern. It will repeat three times + HW4

We will lecture on Fridays at 2:30 to make up for the Monday holidays.
47

Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

Le
ct

ur
e

Le
ct

ur
e

di
sc

us
si

on

Le
ct

ur
e

Le
ct

ur
e

di
sc

us
si

on

H
W

, P
A

as
si

gn
ed

H
W

 d
ue

PA
 d

ue

Programming assignments

PA1: D3 and call chaining
Learn about a concrete DSL; implement a small DSL construct

PA2: Control abstraction
bytecode compiler and interpreter, laziness, coroutines

PA3: Reactivity
Asynchronous programming, events, GUIs

HW4: Parsing and grammars
Writing small compilers

48

Final independent project (in teams)

Milestones and deliverables (see course calendar):
You identify a problem solvable with a language

with our help

You design a small language
you get feedback from us and from peers

You implement it
in two weeks, to see small languages can be built rapidly

The grand finale: posters, demos and pizza!
During finals week, at the time of written final exam

49

Late policy

PA: up to three late days, 15% penalty for each day

HW: no late days

Final Project deliverables: no late days

50

Exams

Midterm: Feb 2, 80 minutes, in class

Quiz: March 10, Thursday(!), evening, 60min

Final project posters: Mar 15 (Tues) 2:30 pm, 2 hours

51

The CSE Academic integrity

We will follow the CSE policy
http://www.cs.washington.edu/students/policies/misconduct:

Rule 1: You must indicate on your submission any assistance you received.

Rule 2: You must not share actual program code with other students.

Rule 3: You must not look at solution sets or program code from other
years, nor should you make your own solutions publicly available even after
the due date.

Rule 4: You must be prepared to explain any program code you submit.

Rule 5: Modifying code or other artifacts does not make it your own.

52

Back-to-basic lectures

No laptops and tablets in the classroom.

Exception: taking notes.
You must email the notes to us after class

If lecture pace is slow:
ask us for challenge problems

No textbook for this course
slides, discussion notes, project handouts, simple papers

53

Add code

Overload Request Link: http://tinyurl.com/hjl3tpj

Your code word is:
[visit the instructors during office hours]

54

What is a language?
an implementation of an abstraction

3:22

Language

Loosely, abstractions materialized in a set of types

type: data + operations + composition

May have a mechanism for error checking (static and
dynamic type checks)

May come with an (optimizing) compiler

56

External vs. Internal languages

The language you’ll write will likely be a DSL
a small, domain-specific language, tailored to a task

Two ways to implement:
External DSL: a dedicated language

parsed + compiled or interpreted

Internal DSL: a language created in a host language
Implemented as a library, potentially using meta-programming
features of the host languages, such as macros, overloading, …

57

Call chaining
one possible language implementation

3:30

Call chaining is widespread and versatile

Expresses many abstractions. Embedded in many languages.

jQuery (DOM manipulation in JS)
$("#p1").css("color", "red").slideUp(2000).slideDown(2000);

Linq (DB queries in C#)
hostFileData
.Select(line => new { line, m = FilteringRegex.Match(line) })
.Where(item => item.m.Success)
.Select(item => …

Spark (data parallelism in Scala)
val counts = file.flatMap(line => line

.split(“ ”)) .map(word => (word, 1))

.reduceByKey(_ + _)
Rfig (slides in Ruby) – uses nesting of call arguments, not call chaining

slide!('demo 1',
itemizeList('Point 1', 'Point 2', 'Point 3', nil),
'And that\'s all for demo 1.', nil) 59

The purpose of call chaining (1)

Encourages fine-grain decomposition (Lego-like)
Achieved by uniformity of method signatures:

• this and return value special; usually the same (chain) type
• few other arguments used
• forces thinking how to break down into composable elements

For comparison, an API designed less well:
BufferedReader br = new BufferedReader(

new FileReader("D:\\acontent.txt"));
StringBuilder strBuilder = new StringBuilder();
String line = br.readLine();
while(line != null){

strBuilder.append(line);
line = br.readLine();

}
return strBuilder.toString();

60

The purpose of call chaining (2)

A poor man’s syntax suggestive of composition
Achieved by variable-free code

d3.select(“body").append("p").text("hello!");

… same with intermediate variables

var body = d3.select("body");
var p = body.append("p");
p.text("hello!");

61

The purpose of call chaining (3)

Checking for illegal compositions
Achieved by refining the chain type (open file vs. closed file)

open(“log”,append).write(7).close().write(1)

open(“diskFile”,write).connect(“www.uw.edu”);

62

Call chaining is an alternative to what?

Instead, we could design an external language.
A binary search tree in XML:

<tree>
<node id=1, p=2>1</node>
<node id=3, p=2>3</node>

<node id=2, p=4>2</node>
…

</tree>

… same tree data structure in one call-chaining syntax
var tree =
leaf(1).
leaf(3).node(2).
leaf(5).
leaf(7).node(6).node(4)

63

Implementation (1)

Start with designing the component operations

Our languages for constructing binary trees:
1. create a leaf
2. create an internal node and join two

“most recent” subtrees

leaf(1).
leaf(3).node(2).
leaf(5).
leaf(7).node(6).node(4)

64

Implementation (2)

Next, ask what the chain type must be.
leaf(1)
.leaf(3)
.node(2)
.leaf(5)
.leaf(7)
.node(6)
.node(4)

The chain value must be a stack of subtrees.
The final tree is at the top of the stack.

65

High-order functions (HOF)

HOF: a function that accepts or returns a function.
Uses:
1) Parameterize the operator (iterators, logic)

d3.selectAll("p").each(function(p) {
console.log(p.source.id);})

circle.attr(“r”, function(d) { return Math.sqrt(d); });

2) Delaying the execution to later events (callbacks)
$(document).ready(function() { … });

66

Function operators

Passing functions is so common. We will use many
non-call-chaining operators. This one is from PA1.

function negate(pred) {
return function() { return !pred.apply(this, arguments); };

}

67

Scaling the axes in PA1

circles.attr("cy", function(d) { return d.nbRepos; })
.attr("cx", function(d) { return d.year; })
.attr("r", r);

How do we scale these with an elegant abstraction?

var yScale = d3.scale.log()
.domain([d3.min(langs, function(d) { return parseInt(d.nbRepos); }),

d3.max(langs, function(d) { return parseInt(d.nbRepos); })])
.range([h-r,r]);

circles.attr("cy", function(d) { return yScale(d.nbRepos); })

yScale is a function returned by scale.log().domain().range()

68

Introduction to HW1
towards programming language sophistication

3:45

HW1, PA1

Both assigned today. Due in 6 and 13 days, resp.
Individual submissions but feel free to discuss

Rationale for HW1 includes language sophistication
- such as the pitfalls of type coercion
- a sample of what programmers need to know is Gary

Bernhardt’s WAT talk

70

Conclusion

3:49

Take home points.

What is a language?

Why languages help write software.

Examples of small languages and their abstractions.

72

What problem will your language solve?

There is lots to be invented in programming languages.
You can take a stab at in your final project.

This quote should motivate you:

Millions for compilers, but hardly a penny for understanding human programming
language use. Now, programming languages are obviously symmetrical, the
computer on one side, the human on the other. In an appropriate science of
computer languages, one would expect that half the effort would be on the
computer side, understanding how to translate the languages into executable
form, and half on the human side, understanding how to design languages that
are easy or productive to use. Yet, we do not even have an enumeration of all the
psychological functions programing languages serve for the user. Of course, there
is lots of programming language design, but it comes from computer scientists.
And though technical papers on languages contain main appeals to ease of use
and learning, they patently contain almost no psychological evidence nor any
appeal to psychological science.

- A. Newell and S. Card 73

How is this compiler class different?

Not intended for advanced compiler engineers
there are relatively few among our students

... but for software developers
Why a developer need a PL class?

Don’t be a boilerplate programmer.
Instead, build tools for users and other programmers

– Libraries, frameworks
– small languages (such as configuration languages)
– and maybe also big languages
– we saw at least 10 concrete examples in the lecture

74

75

Why a software engineer needs PL

New languages will keep coming
– choose the right one: can reduce code size ten-fold

Write code that writes code
– Compilers, code generators

Develop your own abstractions and languages
– Are you kidding? No.

Learn about compilers and interpreters.
– Programmer’s main tools.

76

Trends in programming languages

programming language and its interpreter/compiler:
– programmer’s primary tools
– you must know them inside out

languages have been constantly evolving ...
– what are the forces driving the change?

... and will keep doing so
– new programming problems need new abstractions

