
CSE 401 - Compilers
Section 7

2/28/2013
12:30 - MEB 238

1:30 - EE 037

(I also have office hours on Friday)

Any Lingering Midterm
Questions?

State of the Project

Project 1 Grading

Grade and comments posted via Catalyst.
Interpreting my comments (-1 point per bullet):
● "Line comment at EOF": Your regex for line comments doesn't work if the

line comment the last thing in the file (without a newline before the EOF)
● "Block comment body can't end in "*"": Your regex for block comments

doesn't allow the block comment body to end in a "*" character
● "Integers starting with 0": Your regex for integer literals recognizes non-

zero integers that start with 0. This is wrong because real Java would
interpret these literals as octals, and MiniJava should be a subset of Java.

● "No example [error] output": You didn't provide example output for factorial
or a program with an error. 1 point off for each missing example. Another
point off if I couldn't find a test program that should produce errors.

Email me with questions (steinz@cs) or come
to office hours on Friday.

Project 2 Grading

● TestAST implemented as requested
● Factorial AST printout looks right
● Description of grammar changes

○ No reduce-reduce conflicts
○ Described shift-reduce conflicts

● Description of language extensions (if any)

Anything else I should be looking for?

Project 3

● TestSemantics implemented as requested
● Symbol tables are printed and "look right"

○ Give us some example output
● Type information stored somewhere
● Requested error checks implemented

○ Grading will be test driven
● Error messages printed and "look good"

○ Give us some example output
● INFO file

○ Describe any extensions, additional checks, etc.
○ Describe surprises (anything not implemented?)
○ Any changes to the scanner/parser?

Test Driven Development
Source Control

Suggested implementation strategy:
● Expressions, main, and println
● Object creation and simple method calls
● Method parameters and variables
● Control flow
● Class variables and inheritance
● Arrays and anything else (extensions, ...)

Project 4

Bootstrapping

A small C program that will call your asm code
● Link your .s output file with gcc
● Debug with gdb
● demo.s example in the project writeup

Implements IO and memory management
● Interface with the system here

Does this still feel like magic?

demo.s (+ Fact$ tags)

...
asm_main: # your main method
...

Fact$fact: # method implementation
...

.data
Fact$$: # method table
.quad 0 # no superclass
.quad Fact$fact # method pointer

Project 4 Testing

Building:
● Your compiler

○ .java -> .s
● gcc

○ .s + bootstrap code -> executable

You'll probably want to script this

Pass args to ant: ant -Dfile=test1.java test-file
Using an arg in build.xml: input="${file}"

Some Review

Objects Representation

Field storage
● Accessed via an offset

○ "this" is passed to methods implicitly
● Contain fields of superclass

○ Even if shadowed (for parent methods)

Pointer to a (per-class) method dispatch table
● Tables built at compile time
● Subclass table starts with parent table
● Runtime lookup when method is called

Object Creation

Steps:
● Get memory

○ Initialization (Java, C, ...)?
● Store method table pointer
● Call a constructor

○ May call superclass' constructor
● Return a pointer

x64

Register and calling conventions in lecture
slides
● Arguments passed via registers
● Keep %rsp 16 byte aligned
● Follow conventions (or calls into boot.c might

break)!
● Only need to support passing upto 6 args

Symbols in Linux (s) vs Windows, OS X (_s)
● Make sure your code works on Linux (attu)
● Ideally, just develop on Linux (attu, VM)

A Stack Machine

The easiest way to generate working code

Leave results in %rax (the top of the stack)

Push intermediaries when needed
Pop what you push

Some high-level PLs are
stack-oriented too (Joy, Forth,

Other Project Tips

Your compiler can generate comments
● Helps track where the asm comes from

Use semantic names for labels
● while1, if1, else1, etc.
● Consider matching up if/else numbers

Build incrementally and test
Start early

Questions?

x64 Syntax Reminder
; Intel/Microsoft prologue
;
push rbp
mov rbp,rsp
sub rsp,16

; Store rdi to frame ptr-8
movq [rbp–8],rdi

GNU/AT&T prologue
#
pushq %rbp
movq %rsp, %rbp
subq $16, %rsp

Store rdi to frame ptr-8
movq %rdi,-8(%rbp)

