
CSE 401 - Compilers
Section 3

1/31/2013
12:30 - MEB 238

1:30 - EE 037

A CFG for Natural Languages
S ::= NP VP // Sentence
NP ::= DET NP | N | NP PP // Noun Phrase
VP ::= V NP | VP PP // Verb Phrase
PP ::= P NP // Prepositional Phrase

N ::= boy | girl | house | UFO | radar | telescope
 | alien | government conspiracy // Noun
V ::= sees | meets | leaves | knows | greets // Verb
DET ::= a | an | the // Determiner
P ::= to | for | with | in // Preposition

"The girl sees the boy in the telescope."

More Natural Language Ambiguities

I cleaned the dishes in my pajamas.
I cleaned the dishes in the sink.

They cooked the beans in the pot on the stove
with handles.
She knows you like the back of her hand.

Visiting relatives can be boring.

http://www.cs.washington.edu/education/courses/cse517/13wi/slides/cse517wi13-Parsing.pdf

http://www.cs.washington.edu/education/courses/cse517/13wi/slides/cse517wi13-Parsing.pdf
http://www.cs.washington.edu/education/courses/cse517/13wi/slides/cse517wi13-Parsing.pdf

Abstract Syntax Trees

A program, without the extra syntax for the
parser (parenthesis, semicolons, ...)

Programs for people who don't care about
parsing

Representation in Java:
● Simple classes represent AST nodes
● Inheritance used for Statements,

Expressions, and Types

AST Representation in the Project
public abstract class Statement extends ASTNode { ... }
public abstract class Exp extends ASTNode { ... }

public class Assign extends Statement {
 public Identifier i;
 public Exp e;

 public Assign(Identifier ai, Exp ae, int ln) {
 super(ln);
 i=ai; e=ae;
 }
 ...
}

Project Part 2:
Parser and Abstract Syntax

Due 2/13

● Construct parser via CUP that builds an AST
● No semantic analysis / type checking yet
● Build a pretty-print visitor

○ A comment-stripping auto-formatter
○ Mostly for practice implementing a visitor

Token Declarations in CUP

/* operators: */
terminal PLUS, BECOMES;

/* delimiters: */
terminal LPAREN, RPAREN, SEMICOLON;

/* tokens with values: */
terminal String IDENTIFIER;

Nonterminals in CUP

Declared similar to terminals:

nonterminal List<Statement> Program;
nonterminal Statement Statement;
...

Use provided classes AST classes in AST/

CUP Parsing Rules
AssignStatement ::=
 Identifier:id BECOMES Expression:expr SEMICOLON
 {: RESULT = new Assign(id, expr, idleft); :}
;

Semantic actions executed when rule reduced

id will refer to result of recursive parse

idleft is the line number of id (legacy magic)

Line Numbers in AST Nodes

10 int x;
11 x = "asdf";

Parse AST
Run type-checking visitor
Type error found - print a message:

"attempt to assign string to int on line 11"
 Need to store line numbers in AST nodes

Precedence Declarations in CUP

Can specify precedence and associativity of operators:
precedence left PLUS;

Best to read the CUP documentation for more details

Operating on ASTs

Object-Oriented approach:
● Each node knows how to do things:

public class While extends Statement {
public typeCheck(...) { ... }
public optimize(...) { ... }
public generateX86(...) { ... }
public prettyPrint(...) { ... }

}

Object-Oriented Approach to
Operating on ASTs

Easy to add new kinds of nodes:
● Define a new class for the new node
● Extend Statement, Expression, or ASTNode
● Define abstract methods (typeCheck, generateX86,

prettyPrint, etc.)
● All in one file
● But ASTs don't tend to change much over time
Harder to add new kinds of operations:
● Adding generateARM, new optimizations, etc.
● Have to touch a lot of files
● We want to add a lot of operations over time
● It would be nice if all of the code for one operation was

in one place

Visitor Pattern

● Lets us put all of the code for one operation
together in one class
○ Create a class extending Visitor
○ Implement methods defined in the Visitor interface

visit(If n) {...}
visit(While n) {...}
...

● Cleaner and more efficient than:
visit(ASTNode n) {

if (n instanceof While) { ... }
else if (n instanceof If) { ... }
...

Visitor Pattern

● To implement:
○ Every node has a method

accept(Visitor v) { v.visit(this); }
● First, usual dynamic dispatch on v

○ Which visitor class to select a method from
● Second dispatch on type of this

○ Which method to call from that visitor class
● So inside a visitor method, calling node.expr.accept

(this)does what you want
● Calling this.visit(node.expr) will dispatch on the

compile-time (not run-time) type of node.expr, but
visit(Exp) is not defined (compiler error)!

An Example TypeCheckVisitor
public class TypeCheckVisitor implements Visitor {

public void visit(If n) {
// visit the conditional expression first
n.e.accept(this);
assert(n.e.getType().equals(BOOL_TYPE));
...

}
...

}

Flexible - visitors controls the descent down the AST
Modular - all of the code for one operation in one place
Wouldn't need the accept method if we had multimethods

Building an LR(0) Parser

Add start state to grammar
Build the DFA (Closure(S), Transition(I, X))
Build the LR(0) Parse Table (action and goto)

S ::= A$
A ::= aA
A ::= b

Building an SLR Parser

FIRST
FOLLOW
nullable

S ::= E$
E ::= 1E
E ::= 1

Homework, Project, Lecture, ...

Questions?

