CSE 401 — Compilers

Lecture 4: Implementing Scanners
Michael Ringenburg
Winter 2013

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Agenda

* Last week we covered regular expressions and
finite automata.

* Today, we’ll finish our final example (NFA to
DFA conversion) and then talk about how
scanners are implemented.

* Wednesday, we’ll begin our discussion of
parsing.

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/14/13

1/14/13

Announcements

* Part 1 of the project (the scanner) will be
released tomorrow morning.
— If you or your partner haven’t emailed the course staff
to let us know your team, do so TODAY.
— If you haven’t been able to find a partner, email me
and I'll pair you up with someone else who hasn’t.

* You can also check the discussion board — there have been a
few posts by people looking for partners.

— We currently have an even number of students (54),
so everyone should be able to have a partner.

Winter 2013 UW CSE 401 (Michael Ringenburg)

Example

* Convert NFA to a DFA:

Step 1: Find € closure of start state: {1,2,5}

Winter 2013 UW CSE 401 (Michael Ringenburg)

Example

* Convert NFA to a DFA:

-_> {1I215}

Step 2: Make a new DFA state corresponding to this €
closure. Mark it as unvisited (yellow in this diagram).

Winter 2013 UW CSE 401 (Michael Ringenburg)

Example

* Convert NFA to a DFA:

?
/ ?
w—((1,25} Jrm— ?
C
?
Loop: As long as there are unvisited DFA nodes, pick

one. Consider transitions from its corresponding
NFA states for every symbol in the alphabet.

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/14/13

Example

* Convert NFA to a DFA:

/ {3}

— {1,2,5} p—p ?
C
?

Only transition on ‘a’ from 1,2, or 5 is to 3.

Winter 2013 UW CSE 401 (Michael Ringenburg)

Example

* Convert NFA to a DFA:

/ {3}

C
?
€ closure of {3} is just 3 (no € transitions), so {1,2,5}

transitions to {3} on ‘a’. This DFA state does not
exist yet, so make it and mark it unvisited.

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/14/13

—_—

Example

Convert NFA to a DFA:

/ {3}

?

{1,2,5}

No transitions from 1, 2, or 5 on symbol ‘b’.

Winter 2013 UW CSE 401 (Michael Ringenburg)

—_

Example

Convert NFA to a DFA:

/ {3}

C

{1,2,5}

{6}

Only transition from 1, 2, or 5 on ‘c’ is to 6.

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/14/13

—_—

Example

Convert NFA to a DFA:
/ {3}
{1,2,5}
{6,7}

Epsilon closure of {6} is {6,7}, so {1,2,5} transitions to {6,7}
on ‘c’. This doesn’t exist, so create and mark unvisited.

Winter 2013 UW CSE 401 (Michael Ringenburg)

Example

* Convert NFA to a DFA:
a {3}
C
{6,7}
Done with {1,2,5}. Mark as visited (black in
our diagram).
Winter 2013 UW CSE 401 (Michael Ringenburg)

1/14/13

Example

* Convert NFA to a DFA:

{6,7}

Repeat for another unvisited node ({3}). Creates {4,7}.

Winter 2013 UW CSE 401 (Michael Ringenburg)

Example

* Convert NFA to a DFA:

{6,7}
Repeat for unvisited node ({4,7}). No transitions.

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/14/13

Example

* Convert NFA to a DFA:

Repeat for unvisited node {6,7}. No transitions.

Winter 2013 UW CSE 401 (Michael Ringenburg)

Example

* Convert NFA to a DFA:

No more unvisited nodes. Mark as final all states
which include an NFA final state in their set.

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/14/13

Building a Scanner

* We've seen the theory (RE to NFA to DFA), but how is this
converted to practice?

* A scanner needs to take an input stream and convert it to
tokens.

— Following the “longest match” principle —i.e., build the longest legal
token starting at the current input position. Then repeat.
* General idea:

— Create an RE for every token type. E.g., an RE for +, and RE for
integers, etc.
— Build a DFA for the union of the REs
— Modify DFA implementation to recognize the longest matching
substring (rather than only accepting the whole string).
* This is sometimes free/unnecessary for certain DFAs

— Repeatedly invoke (typically by the parser to obtain next token).

Winter 2013 UW CSE 401 (Michael Ringenburg)

Scanning DFA

* How does this modified DFA work?

— Must not just accept, but accept and tell us which RE
generated the string (i.e., which token we found).
— Identify the token by the final state we end in.

* What if our DFA final state corresponds to multiple REs from
the original?

* This can happen if text matches multiple tokens. E.g., “for” may
match the for keyword RE and the identifier RE. Compiler
writer must define priority order (e.g., keywords > IDs).

— Must also find longest match — may get this for free...

¢ If needed, run DFA until no more transitions. If not in a final
state, backtrack to last seen final state. Not always necessary.

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/14/13

Putting it together

* Ascanneris a DFA that finds the next token each time it is
called (and advances the input pointer to the token’s end).

* Every “final” state of a DFA emits (returns) a token.
* For example:

== becomes <equal> (not <assign> <assign>)

(becomes <leftParen>

private becomes <private>
* Compiler writer (you!) choose the token names

* Also, there may be additional data associated with tokens ...
\r\n might count lines; all tokens might include line #;
integer literals include value; etc.

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ DFA => Code, by Hand

* Option 1: One procedure per DFA state

— Reads in a character, and uses a switch statement to determine the
next state to call

— Final states return token.
* Options 2: Single procedure for DFA, switch based on first character
— We'll see an example of this in a few slides.
* Pros
Fairly straightforward to write.
If written well, can be faster than generated scanners (particularly
option 2).
Can handle any weird language corner cases that don’t map perfectly
to the RE/NFA/DFA model.

Readable code (mostly).
* Cons
— Alot of tedious work — thus, error prone.

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/14/13

10

’ DFA => code, automatic

* Option 1: use a tool to generate table driven scanner
— Rows: states of DFA
— Columns: input characters
— Entries: action
* Go to next state
* Accept token, go to start state
* Error
* Pros
— Convenient —just feed it the token regular expressions
— Exactly matches specification you give it, if tool correct
* Cons
— “Magic”
— Sometimes language constructs don’t map perfectly to FA model
— Not efficient

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ DFA => code, automatic

* Option 2: use tool to generate direct-coded scanner

— Transitions embedded in the code, using conditional
statements, loops, possibly goto

* Pros
— Convenient —just feed it the REs
— Exactly matches specification you give it, if tool correct
— More efficient than table driven scanners
* Cons
— “Magic”
— Code is unreadable
— Generates lots of code (but can be fairly fast)

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/14/13

11

’ The Real World

* In commercial settings (and most gcc front ends)
hand written scanners used more often than not.

— Especially for larger languages, e.g., C++/Java.

— Can purchase, e.g., EDG C/C++ front end (used by
Cray, Intel, others).

* Why?
— Fastest

— Can handle language corner cases — C++ especially
bad.

— Readable/debuggable code.

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Example: A hand-
written DFA and scanner

* To demonstrate, we’ll show a hand-written DFA for
some typical programming language constructs

— Then use to construct a hand-written scanner

* Setting: Scanner is called whenever the parser needs a
new token
— Scanner stores current position in input

— From there, use a DFA to recognize the longest possible
input sequence that makes up a token and return that
token; save updated position for next time

* Disclaimer: Example for illustration only — you’ll use
tools for the course project.

e Credit: Hal Perkins wrote this DFA and code.

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/14/13

12

Winter 2013

9 Scanner DFA Example (1)

whitespace
or comments

©

O

)

end of input @
Accept EOF
(Q Accept LPAREN
) Q Accept RPAREN
: Q Accept SCOLON

UW CSE 401 (Michael Ringenburg) 25

Winter 2013

I m =
: 5 @ Accept NEQ
[Other] Accept NOT,
don't advance

input pointer

@ Accept LEQ
[other] Accept LESS,
don't advance
input pointer
UW CSE 401 (Michael Ringenburg) 26

1/14/13

13

Accept INT, don't advance

‘ Only integers in this language.

Winter 2013 UW CSE 401 (Michael Ringenburg)

Accept ID or keyword,
don't advance

* Strategies for handling identifiers vs keywords

— Hand-written scanner: look up identifiers in table of keywords (good
application of perfect hashing—i.e., given knowledge of keys ahead of
time, can ensure no collisions.)

— Machine-generated scanner: generate DFA with appropriate
transitions to recognize keywords (> priority than IDs).

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/14/13

14

Backtracking

* As we saw, backtracking is not necessary in our
DFA.

— More efficient

* In many cases, token syntax can be chosen (and
DFA constructed carefully) such that backtracking
is rare (or can be avoided entirely).

* Easier to ensure this happens in a hand-written
scanner

— Part of why well-written hand-written scanners are
the most efficient.

Winter 2013 UW CSE 401 (Michael Ringenburg)

Implementing a Scanner by
Hand — Token Representation

* Atoken is a simple, tagged structure
— (Compilers written in C/C++ often use a “tagged union” style structure)

public class Token {
public int kind; // token’s lexical class
public int intVal;// integer value if class = INT
public String id; // actual identifier if class = ID

// lexical classes

public static final int EOF = 0; // “end of file”
// token

public static final int ID = 1; // identifier,
// not keyword

public static final int INT = 2; // integer

public static final int LPAREN = 4; // (

public static final int SCOLN = 5; // ;

public static final int WHILEK = 6; //)

// etc. etc. etc. ..

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/14/13

15

Simple Scanner Example

// global state and methods

// next unprocessed input character
static char nextch;

// advance to next input char
void getch() { .. }

// skip whitespace and comments
void skipWhitespace() { .. }

// input is a letter, digit, or _
boolean isIDChar(char c);

Winter 2013 UW CSE 401 (Michael Ringenburg)

Scanner getToken()
method

// Called by parser to retrieve the next input token
public Token getToken() {
Token result;

skipwhiteSpace();
if (/*no more input*/) {

result = new Token(Token.EOF); return result;

}

switch(nextch) {

case '(': result = new Token(Token.LPAREN); getch();

return result;

case ‘)': result = new Token(Token.RPAREN); getch();

return result;

case ‘;': result = new Token(Token.SCOLON); getch();

return result;
// Repeat for other single character tokens..

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/14/13

16

1/14/13

getToken() (2)

case '!': // | or !=
getch();
if (nextch == '='
result = new Token(Token.NEQ); getch();
return result;

} else {
result = new Token(Token.NOT); return result;
}
case '<': // < or <=
getch();

if (nextch == '=
result = new Token(Token.LEQ); getch();
return result;
} else {
result = new Token(Token.LESS); return result;

}

Winter 2013 UW CSE 401 (Michael Ringenburg)

getToken() (3)

case '0': case 'l': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
// integer constant
String num = nextch;
getch();
while (Character.isdigit(nextch)) {
num = num + nextch;
getch();
}
result = new Token(Token.INT,
Integer (num).intValue());
return result;

Winter 2013 UW CSE 401 (Michael Ringenburg)

17

a getToken() (4)

case 'a': .. case 'z':

case 'A': .. case 'Z': // id or keyword
string s = nextch;
getch();

while (isIDChar(nextch)) // letter, digit, _
{

s = s + nextch; getch();
}
if (keywordTable.isKeyword(s)) {

result = new Token(keywordTable.getKind(s));
} else {

result = new Token(Token.ID, s);

}

return result;

Winter 2013 UW CSE 401 (Michael Ringenburg)

e MiniJava Scanner
Generation
* We’'ll use the JFlex tool to automatically create a
scanner from a specification file.

* WEe’'ll use the CUP tool to automatically create a
parser from a specification file.

* Token class is shared by jflex and CUP. Lexical
classes (token kinds) are listed in CUP’s input file
and it generates the token class definition.

* So you’ll need to modify both specification files
for the scanner portion of your project

— Parser mods will be small.

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/14/13

18

JFlex Specification
Example

* Open src/Scanner/minijava.jflex in your project starter
code. You’ll see that a few tokens have already been
done for you, to demonstrate how it works, e.g.:

"+" { return symbol(sym.PLUS); }
{letter} ({letter}|{digit}|)* {

return symbol(sym.IDENTIFIER, yytext());
}

* Format is Token RE, followed by code to execute.
* Can define helper abbreviations, e.g.:

letter = [a-2zA-Z]
digit = [0-9]

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Specifying the tokens

* Tokens are specified in the CUP file
— src/Parser/minijava.cup

/* Terminals (tokens returned by the scanner) */

/* reserved words: */
terminal DISPLAY;

/* operators: */
terminal PLUS, BECOMES;

/* delimiters: */
terminal LPAREN, RPAREN, SEMICOLON;

/* tokens with values: */
terminal String IDENTIFIER;

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/14/13

19

’ JFlex Demo!

* Your project starter code has a few tokens
defined already. We’ll add multiplication.

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Coming Attractions

 Starting next lecture: parsing

— Will do LR parsing first — we need this for the
project, then LL (recursive-descent) parsing, which
you should also know.

— May take the rest of January —it’s a big topic...
* Sections — more details about using JFlex for
your project.

— The full details can be found in the JFlex and CUP
documentation.

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/14/13

20

