CSE 401 — Compilers

Lecture 3: Regular Expressions & Scanning,
continued...

Michael Ringenburg
Winter 2013

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Today’s Agenda

e Last time we reviewed languages and
grammars, and briefly started discussing
regular expressions.

* Today I'll restart the regular expression
discussion, since it felt a bit rushed.

* I'll then describe how to build finite automata
that recognize regular expressions.

* On Monday, I'll discuss how scanners are
implemented.

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/11/13

1/11/13

’ Announcements

* Homework 1 will be out later today.
— I'll post on course website and send email.
— Due next Friday (January 18).

* First part of the project (the scanner) will be
assigned early next week.

* Office hours selected, starting next week:
— Laure: Mondays (except 1/21 & 2/18), 4-5, CSE 218
— Mike: Wednesdays, 2:30-3:30, CSE 212

* Or by appointment on Tuesdays

— Zach: Fridays, 1:30-2:30, CSE 218

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Regular Expressions

* Defined over some alphabet

— For programming languages, alphabet is usually
ASCII or Unicode

* If re is a regular expression, L(re) is the
language (set of strings) generated by re

Winter 2013 UW CSE 401 (Michael Ringenburg)

P

Fundamental REs

re |L(re) |Notes

a |{a} Singleton set, for each symbol
a in the alphabet 2

€ |{ €} |Empty string

g |{} Empty language

These are the basic building blocks that other
regular expressions are built from.

Winter 2013

UW CSE 401 (Michael Ringenburg)

P

Operations on REs

re |L(re) Notes

rs |L(r)L(s) Concatenation: a string from r
followed by a string from s

r|s|L(r) U L(s) |Combination (union): a string
from either r or s

r* | L(r)* Kleene closure: sequence of 0
or more strings from r

Precedence: * (highest), concatenation, | (lowest)
Parentheses can be used to group REs as needed

Winter 2013

UW CSE 401 (Michael Ringenburg)

1/11/13

1/11/13

’ Examples

re Meaning

+ single + character

! single ! character

I= 2 character sequence “!="

Xyzzy 5 character sequence “xyzzy”

(1]10)* Zero or more binary digits
(1]10)(1]0)* |Binary constant (possible leading 0s)

0]1(1|0)* Binary constant without extra leading Os,
i.e, 0 or starts with 1 (| has lowest precedence)

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Abbreviations

The basic operations generate all possible regular
expressions, but there are common abbreviations
used for convenience. Some examples:

Abbr. Meaning Notes

r+ (rr*) 1 or more occurrences

r? (rle) 0 or 1 occurrence

[a-z] (alb]...|2) 1 character in given range
[abxyz] | (a]b|x]y|z) |1 of the given characters

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/11/13

9 Exercise:
What do these represent?

re Meaning

[abc]+

[abc]*

[0-9]+

[1-9][0-9T*

[a-zA-Z][a-zA-Z0-9_]*

Winter 2013 UW CSE 401 (Michael Ringenburg)

9 Exercise:
What do these represent?

re Meaning

[abc]+ Sequence of one or more a’s, b's
and c’s

[abc]* Zero or more a’s, b’s, and c's

[0-9]+ Non-negative integer (possibly
with leading 0s)

[1-9][0-9]* Positive integer (no leading 0s)

[a-zA-Z][a-zA-Z0-9_]* |One or more letters or digits, must
start with a letter.

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Abbreviations

* Many systems allow abbreviations to make
writing and reading definitions or
specifications easier

name ::=re

— Restriction: abbreviations may not be circular
(recursive) either directly or indirectly (else would
be not be a regular language)

* digit ::= [0-9] is okay
* number ::= digit number is not

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Example

* Possible syntax for numeric constants

digit ::= [0-9]

digits ::= digit+

number ::= digits (. digits)?
([eE] (+ | -)? dligits) ?

* Notice that this allows (unnecessary) leading
Os, e.g., 00045.6. (0, or 0.14 would be
necessary 0s.)

* How would you prevent that?

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/11/13

1/11/13

’ Example

* Possible syntax for numeric constants

digit ::= [0-9]

nonzero_digit ::= [1-9]

digits ::= digit+

number ::= (0 | nonzero_digit digits?)
(.digits)?
([eE] (+ | -)? digits) ?

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Recognizing REs

* Finite automata can be used to recognize
languages generated by regular expressions

* Can build by hand or automatically

— Reasonably straightforward, and can be done
systematically

— Tools like Lex, Flex (for compilers written in C++),
and JFlex (for compilers written in Java) do this
automatically, given a set of REs.

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Finite State Automaton

* Review from your CS theory class ...
* Afinite set of states
— One marked as initial state
— One or more marked as final states
— States sometimes labeled or numbered
* A set of transitions from state to state
— Each labeled with symbol from % (the alphabet), or €
— The symbols correspond to characters in the input stream.

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Finite State Automaton

* Operate by reading input symbols (usually characters)
— Transition can be taken if labeled with current symbol
— e-transition can be taken at any time
* Accept when final state reached and no more input
— Slightly different in a scanner, where the FSA is used as a subroutine to
find the longest input string that matches a token RE.
* Reject if no transition possible, or no more input and not in
final state (DFA)

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/11/13

Example: FSA for “pig”

Winter 2013 UW CSE 401 (Michael Ringenburg)

Example: FSA for “pig”

Input 1: pig

—@-_—10

Status: Executing...

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/11/13

Example: FSA for “pig”

Input 1: pig
O--@—C-0

Status: Executing...

Winter 2013 UW CSE 401 (Michael Ringenburg)

Example: FSA for “pig”

Input 1: pig
O—CO—@-0

Status: Executing...

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/11/13

10

Example: FSA for “pig”

Input 1:
OO0 @
N N N
Status: Accept! (In a final state, and no
more input.)
Winter 2013 UW CSE 401 (Michael Ringenburg)

Example: FSA for “pig”

Input 2: pit

—@-_—10

Status: Executing...

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/11/13

11

Example: FSA for “pig”

Input 1: pit
O--@—C-0

Status: Executing...

Winter 2013 UW CSE 401 (Michael Ringenburg)

Example: FSA for “pig”

Input 1: pit
O—CO—@-0

Status: Executing...

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/11/13

12

1/11/13

Example: FSA for “pig”

Input 1:
O—O—0-0

Status: Reject! (No legal transitions on ‘t’.)

Winter 2013 UW CSE 401 (Michael Ringenburg)

DFA vs NFA

* Deterministic Finite Automata (DFA)
— No choice of which transition to take

* Non-deterministic Finite Automata (NFA)
— Choice of transition in at least one case

— g transitions (arcs): If the current state has any outgoing € arcs,
we can follow any of them without consuming any input

— Accept if some way to reach a final state on given input

— Reject if no possible way to final state

— Modeling choice option 1: guess path, backtrack if rejects

— Option 2: “clone” at choice point, accept if any clone accepts

Winter 2013 UW CSE 401 (Michael Ringenburg)

13

’ Example NFA

Input 1: GOSEAHAWKS

’ Example NFA

Input 1: GOSEAHAWKS

1/11/13

14

P

Input 1:

Example NFA

SEAHAWKS

P

Input 1:

Example NFA

SEAHAWKS

1/11/13

15

P

Input 1:

Example NFA

EAHAWKS

P

Input 1:

Example NFA

AHAWKS

1/11/13

16

Example NFA

Input 1: HAWKS

Winter 2013 UW CSE 401 (Michael Ringenburg)

Example NFA

Input 1: HAWKS

Status: Executing...

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/11/13

17

1/11/13

Winter 2013 UW CSE 401 (Michael Ringenburg)

Winter 2013 UW CSE 401 (Michael Ringenburg)

18

Example NFA

Winter 2013 UW CSE 401 (Michael Ringenburg)

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/11/13

19

Status: Accept!

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ FAs in Scanners

* Want DFA for speed (no backtracking or
cloning)

e But conversion from regular expressions to
NFA is easier

* Luckily, there is a well-defined procedure for
converting an NFA to an equivalent DFA

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/11/13

20

From RE to NFA:
base cases

These correspond to the “Fundamental REs” shown
earlier.

NFA for symbol ‘a’

NFA for empty string (g)

N
N
NFA for empty set () 40

Winter 2013 UW CSE 401 (Michael Ringenburg)

Concatenation: rs

An &- transition from

This represent an NFA that
accepts the regular

every final state of the r

machine to start state of

expression r .
P the s machine.

The idea: When we find a string that matches the regular expression r, we start
trying to match the regular expression s. Since this is an NFA, it’s okay if we guess
wrong — we will make an € transition from every prefix of the input that matches
r, and thus check all possible matches.

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/11/13

21

The idea: Non-deterministically check if the input matches either r or s. If either
sub-machine reaches a final state, jump to the union machine’s final state. If the
entire input has been consumed at this point (i.e., the entire string matches r or

s), the union machine will accept.

Winter 2013 UW CSE 401 (Michael Ringenburg)

Kleene star: r *

The idea: At the start node (N1), we attempt to match either the empty string (to
account for the possibility of zero occurrence of r) or a single match of r. Every
time the r machine find a potential match, it non-deterministically jumps back to
N1 and repeats the process. Since this is an NFA, it’s okay if we guess the wrong
match of r —we’ll try all of them.

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/11/13

22

’ Example

* Draw the NFA for (ab]|c):

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Example

* Draw the NFA for (ab]|c):

—0~0 —0O*+0

—(O=0

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/11/13

23

P

Example

* Draw the NFA for (ab]|c):

Winter 2013

O=-O—0=0=0

—(O=0

UW CSE 401 (Michael Ringenburg)

P

Example

* Draw the NFA for (ab]|c):

—(O=*0

(If a state has a single outgoing e-transition, and no other
outgoing transitions, you can merge it into the € target.)

Winter 2013

—(O=0

UW CSE 401 (Michael Ringenburg)

1/11/13

24

P

Example

* Draw the NFA for (ab]|c):

Winter 2013

UW CSE 401 (Michael Ringenburg)

P

Exercise

* Draw the NFA for: b(at|ag) | bug

Winter 2013

UW CSE 401 (Michael Ringenburg)

1/11/13

25

’ Exercise

* Draw the NFA for: b(at|ag) | bug

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Exercise

* Draw the NFA for: b(at|ag) | bug

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/11/13

26

1/11/13

’ Exercise

* Draw the NFA for: b(at|ag) | bug

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Exercise

* Draw the NFA for: b(at|ag) | bug

Winter 2013 UW CSE 401 (Michael Ringenburg)

27

From NFA to DFA

* Subset construction: construct a DFA from an NFA. Each DFA state
represents a set of NFA states.

* Key idea: State of DFA after reading some input is the set of all states

that

NFA could have reached after reading the same input

* Algorithm (example of a fixed-point computation):

— Find e-closure (all states reachable via 0 or more e-transitions) of start
state. Create DFA state corresponding to this set. Add to unvisited list.

— While there exist unvisited DFA states, select one (call it d):

Winter 2013

* For each symbol s in the alphabet, determine the NFA states
reachable by any NFA state in the set corresponding to d.

* Determine the € closure of these states. Create a transition from d
on symbol s to a DFA state corresponding to this closure set.

* If this state is new, add to the unvisited list.

UW CSE 401 (Michael Ringenburg)

* Convert NFA to a DFA:

Winter 2013

Example

UW CSE 401 (Michael Ringenburg)

1/11/13

28

—_—

Example

Convert NFA to a DFA:

{1,2,5}

Epsilon closure of start state

Winter 2013 UW CSE 401 (Michael Ringenburg)

—_

Example

Convert NFA to a DFA:

/ {3}

{1,2,5}

Visit {1,2,5}: Transitions on ‘a’.
No € transitions from 3.

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/11/13

29

—_—

Example

Convert NFA to a DFA:

/ {3}

{1,2,5}
c

{6}

Visit {1,2,5}: Transitions on ‘c’.

Winter 2013 UW CSE 401 (Michael Ringenburg)

Example

* Convert NFA to a DFA:
S
—> {125}
C
{6,7}
Epsilon closure of {6}
Winter 2013 UW CSE 401 (Michael Ringenburg)

1/11/13

30

Example

* Convert NFA to a DFA:
a {3}
C
{6,7}
Done with {1,2,5}
Winter 2013 UW CSE 401 (Michael Ringenburg)

Example

Convert NFA to a DFA:

{6,7}

Visit {3}: Just one transition.
Do € closure of new state. Mark {3} as visited.

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/11/13

31

’ Example

* Convert NFA to a DFA:

Last two states have no transitions, but
contain a final state, so mark as final.

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Next Time

* Implementing a scanner
— By hand
— Via automated tools

* Enjoy your weekend
— Go Hawks!

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/11/13

32

