CSE 401 — Compilers

Lecture 3: Regular Expressions & Scanning,
continued...

Michael Ringenburg
Winter 2013
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’ Today’s Agenda

e Last time we reviewed languages and
grammars, and briefly started discussing
regular expressions.

* Today I'll restart the regular expression
discussion, since it felt a bit rushed.

* I'll then describe how to build finite automata
that recognize regular expressions.

* On Monday, I'll discuss how scanners are
implemented.
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’ Announcements

* Homework 1 will be out later today.
— I'll post on course website and send email.
— Due next Friday (January 18).

* First part of the project (the scanner) will be
assigned early next week.

* Office hours selected, starting next week:
— Laure: Mondays (except 1/21 & 2/18), 4-5, CSE 218
— Mike: Wednesdays, 2:30-3:30, CSE 212

* Or by appointment on Tuesdays

— Zach: Fridays, 1:30-2:30, CSE 218
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’ Regular Expressions

* Defined over some alphabet

— For programming languages, alphabet is usually
ASCII or Unicode

* If re is a regular expression, L(re ) is the
language (set of strings) generated by re
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Fundamental REs

re |L(re) |Notes

a |{a} Singleton set, for each symbol
a in the alphabet 2

€ |{ €} |Empty string

g |{} Empty language

These are the basic building blocks that other
regular expressions are built from.
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Operations on REs

re |L(re) Notes

rs |L(r)L(s) Concatenation: a string from r
followed by a string from s

r|s|L(r) U L(s) |Combination (union): a string
from either r or s

r* | L(r)* Kleene closure: sequence of 0
or more strings from r

Precedence: * (highest), concatenation, | (lowest)
Parentheses can be used to group REs as needed
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’ Examples

re Meaning

+ single + character

! single ! character

I= 2 character sequence “!="

Xyzzy 5 character sequence “xyzzy”

(1]10)* Zero or more binary digits
(1]10)(1]0)* |Binary constant (possible leading 0s)

0]1(1|0)* Binary constant without extra leading Os,
i.e, 0 or starts with 1 (| has lowest precedence)
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’ Abbreviations

The basic operations generate all possible regular
expressions, but there are common abbreviations
used for convenience. Some examples:

Abbr. Meaning Notes

r+ (rr*) 1 or more occurrences

r? (rle) 0 or 1 occurrence

[a-z] (alb]...|2) 1 character in given range
[abxyz] | (a]b|x]y|z) |1 of the given characters
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9 Exercise:
What do these represent?

re Meaning

[abc]+

[abc]*

[0-9]+

[1-9][0-9T*

[a-zA-Z][a-zA-Z0-9_]*
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9 Exercise:
What do these represent?

re Meaning

[abc]+ Sequence of one or more a’s, b's
and c’s

[abc]* Zero or more a’s, b’s, and c's

[0-9]+ Non-negative integer (possibly
with leading 0s)

[1-9][0-9]* Positive integer (no leading 0s)

[a-zA-Z][a-zA-Z0-9_]* |One or more letters or digits, must
start with a letter.
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’ Abbreviations

* Many systems allow abbreviations to make
writing and reading definitions or
specifications easier

name ::=re

— Restriction: abbreviations may not be circular
(recursive) either directly or indirectly (else would
be not be a regular language)

* digit ::= [0-9] is okay
* number ::= digit number is not
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’ Example

* Possible syntax for numeric constants

digit ::= [0-9]

digits ::= digit+

number ::= digits (. digits)?
([eE] (+ | -)? dligits ) ?

* Notice that this allows (unnecessary) leading
Os, e.g., 00045.6. (0, or 0.14 would be
necessary 0s.)

* How would you prevent that?
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’ Example

* Possible syntax for numeric constants

digit ::= [0-9]

nonzero_digit ::= [1-9]

digits ::= digit+

number ::= (0 | nonzero_digit digits?)
(.digits)?
([eE] (+ | -)? digits ) ?
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’ Recognizing REs

* Finite automata can be used to recognize
languages generated by regular expressions

* Can build by hand or automatically

— Reasonably straightforward, and can be done
systematically

— Tools like Lex, Flex (for compilers written in C++),
and JFlex (for compilers written in Java) do this
automatically, given a set of REs.
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’ Finite State Automaton

* Review from your CS theory class ...
* Afinite set of states
— One marked as initial state
— One or more marked as final states
— States sometimes labeled or numbered
* A set of transitions from state to state
— Each labeled with symbol from % (the alphabet), or €
— The symbols correspond to characters in the input stream.
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’ Finite State Automaton

* Operate by reading input symbols (usually characters)
— Transition can be taken if labeled with current symbol
— e-transition can be taken at any time
* Accept when final state reached and no more input
— Slightly different in a scanner, where the FSA is used as a subroutine to
find the longest input string that matches a token RE.
* Reject if no transition possible, or no more input and not in
final state (DFA)
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Example: FSA for “pig”
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Example: FSA for “pig”

Input 1: pig

—@-_—10

Status: Executing...
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Example: FSA for “pig”

Input 1: pig
O--@—C-0

Status: Executing...
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Example: FSA for “pig”

Input 1: pig
O—CO—@-0

Status: Executing...
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Example: FSA for “pig”

Input 1:
OO0 @
N N N
Status: Accept! (In a final state, and no
more input.)
Winter 2013 UW CSE 401 (Michael Ringenburg)

Example: FSA for “pig”

Input 2: pit

—@-_—10

Status: Executing...

Winter 2013 UW CSE 401 (Michael Ringenburg)

1/11/13

11



Example: FSA for “pig”

Input 1: pit
O--@—C-0

Status: Executing...
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Example: FSA for “pig”

Input 1: pit
O—CO—@-0

Status: Executing...
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Example: FSA for “pig”

Input 1:
O—O—0-0

Status: Reject! (No legal transitions on ‘t’.)
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DFA vs NFA

* Deterministic Finite Automata (DFA)
— No choice of which transition to take

* Non-deterministic Finite Automata (NFA)
— Choice of transition in at least one case

— g transitions (arcs): If the current state has any outgoing € arcs,
we can follow any of them without consuming any input

— Accept if some way to reach a final state on given input

— Reject if no possible way to final state

— Modeling choice option 1: guess path, backtrack if rejects

— Option 2: “clone” at choice point, accept if any clone accepts
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’ Example NFA

Input 1: GOSEAHAWKS

’ Example NFA

Input 1: GOSEAHAWKS
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Input 1:

Example NFA

SEAHAWKS

P

Input 1:

Example NFA

SEAHAWKS
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Input 1:

Example NFA

EAHAWKS

P

Input 1:

Example NFA

AHAWKS
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Example NFA

Input 1: HAWKS
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Example NFA

Input 1: HAWKS

Status: Executing...
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Example NFA
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Status: Accept!
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’ FAs in Scanners

* Want DFA for speed (no backtracking or
cloning)

e But conversion from regular expressions to
NFA is easier

* Luckily, there is a well-defined procedure for
converting an NFA to an equivalent DFA
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From RE to NFA:
base cases

These correspond to the “Fundamental REs” shown
earlier.

NFA for symbol ‘a’

NFA for empty string (g)

N
N
NFA for empty set () 40
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Concatenation: rs

An &- transition from

This represent an NFA that
accepts the regular

every final state of the r

machine to start state of

expression r .
P the s machine.

The idea: When we find a string that matches the regular expression r, we start
trying to match the regular expression s. Since this is an NFA, it’s okay if we guess
wrong — we will make an € transition from every prefix of the input that matches
r, and thus check all possible matches.
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The idea: Non-deterministically check if the input matches either r or s. If either
sub-machine reaches a final state, jump to the union machine’s final state. If the
entire input has been consumed at this point (i.e., the entire string matches r or

s), the union machine will accept.
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Kleene star: r *

The idea: At the start node (N1), we attempt to match either the empty string (to
account for the possibility of zero occurrence of r) or a single match of r. Every
time the r machine find a potential match, it non-deterministically jumps back to
N1 and repeats the process. Since this is an NFA, it’s okay if we guess the wrong
match of r —we’ll try all of them.
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’ Example

* Draw the NFA for (ab]|c):
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’ Example

* Draw the NFA for (ab]|c):

—0~0 —0O*+0

—(O=0
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Example

* Draw the NFA for (ab]|c):

Winter 2013

O=-O—0=0=0

—(O=0
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Example

* Draw the NFA for (ab]|c):

—(O=*0

(If a state has a single outgoing e-transition, and no other
outgoing transitions, you can merge it into the € target.)
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Example

* Draw the NFA for (ab]|c):
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Exercise

* Draw the NFA for: b(at|ag) | bug
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’ Exercise

* Draw the NFA for: b(at|ag) | bug
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’ Exercise

* Draw the NFA for: b(at|ag) | bug
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’ Exercise

* Draw the NFA for: b(at|ag) | bug
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’ Exercise

* Draw the NFA for: b(at|ag) | bug
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From NFA to DFA

* Subset construction: construct a DFA from an NFA. Each DFA state
represents a set of NFA states.

* Key idea: State of DFA after reading some input is the set of all states

that

NFA could have reached after reading the same input

* Algorithm (example of a fixed-point computation):

— Find e-closure (all states reachable via 0 or more e-transitions) of start
state. Create DFA state corresponding to this set. Add to unvisited list.

— While there exist unvisited DFA states, select one (call it d):

Winter 2013

* For each symbol s in the alphabet, determine the NFA states
reachable by any NFA state in the set corresponding to d.

* Determine the € closure of these states. Create a transition from d
on symbol s to a DFA state corresponding to this closure set.

* If this state is new, add to the unvisited list.
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* Convert NFA to a DFA:

Winter 2013

Example
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Example

Convert NFA to a DFA:

{1,2,5}

Epsilon closure of start state
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Example

Convert NFA to a DFA:

/ {3}

{1,2,5}

Visit {1,2,5}: Transitions on ‘a’.
No € transitions from 3.
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Example

Convert NFA to a DFA:

/ {3}

{1,2,5}
c

{6}

Visit {1,2,5}: Transitions on ‘c’.

Winter 2013 UW CSE 401 (Michael Ringenburg)

Example

* Convert NFA to a DFA:
S
—> {125}
C
{6,7}
Epsilon closure of {6}
Winter 2013 UW CSE 401 (Michael Ringenburg)
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Example

* Convert NFA to a DFA:
a {3}
C
{6,7}
Done with {1,2,5}
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Example

Convert NFA to a DFA:

{6,7}

Visit {3}: Just one transition.
Do € closure of new state. Mark {3} as visited.
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’ Example

* Convert NFA to a DFA:

Last two states have no transitions, but
contain a final state, so mark as final.
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’ Next Time

* Implementing a scanner
— By hand
— Via automated tools

* Enjoy your weekend
— Go Hawks!
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