CSE 401 — Compilers

Lecture 2: Languages, Automata, Regular
Expressions & Scanners

Michael Ringenburg
Winter 2013

Winter 2013 UW CSE 401 (Michael Ringenburg)

e Administrative Notes

* Reading
— Cooper & Torczon: Chapter 1, and Sections 2.1-2.4
— Try to finish by the end of the week — it’ll be helpful
for the first homework.
* First homework

— Should be out on Friday (I’ll post on course website
and send an email).

— Will be due a week from Friday (January 18).

— Note: You have 4 late days for the entire quarter. Use
them wisely (see syllabus for details).

e Reminders

* Please vote for office hours by end-of-day
Thursday (see link on course home page).

— Select whichever slots you think you could
reasonably attend.

— We will use this to help decide office hours for the
TAs and the instructor.

* Please pick your project partner, and send
mail to cse401-staff[at]cs.

— First piece of the project will be released (early)
next week, so you should pick partners this week.

Show

* |t's the time of year where the “S”-word starts
to show up occasionally in weather forecasts.

 The schedule for the quarter is tight, so if we
do have a snow day at some point, we may
have to rush through some of the material.
— If this happens, take advantage of the extra time
on the snow day to pay extra attention to the

readings — with less time to cover the material in
class, the readings become correspondingly more

Important.

e Agenda

* Finish course intro (history)

* |Introduce Scanning (part 1 of your project)

— Quick review of basic concepts of formal
grammars

— Regular expressions
— Lexical specification of programming languages

— Using finite automata to recognize regular
expressions

— Scanners and Tokens

Winter 2013 UW CSE 401 (Michael Ringenburg)

Some History

* Early computers — hand coded assembly language
(punchcards!)

— Hard to write anythinghc_:omplex — but earliest computers
couldn’t execute any thing that comlex.
* 1952: Grace Hopper writes first compiler (for A-0), and
coins the term “compiler”.
— Essentially a collection of mathematical subroutines that could

be called. The compiler would take a series of calls and convert
them into an executable.

— Suclcessors: A-1, A-2 (first “open source” software), and later ...
B-O!

 1957:IBM writes first real “high-level” language compiler,
for FORTRAN. (FORTRAN is high level compared to
assembly.)
— Competitive with hand-optimized code.

— Required 18 person-years (hopefully your projects won’t take
this long!)

Some History

e 1962: First bootstrapped compiler (for LISP)

— A comBiIer that was compiled by itself, rather than written in
assembly (or another language).

— Requires initially creating a very simple compiler in assembly or
another language, and then using that to compile the initial
bootstrapped compiler.

* Initial compiler may contain just a subset of the language. As this
compiler is refined to compile more of the language, the compiler itself
can begin to use more of the language.

— Much more efficient that writing in assembly (like the first
compilers).

— Great way to test a compiler.

Rest of 1960’s, into 1970’s

— Work on formalizing scanning and parsing (theory and practice).

— Automatic parser and scanner generators
* Lex (lexical analyzer) and Yacc (Yet Another Compiler Compiler)
* JFlex and Cup are direct descendants of these C-based tools.

Some History

e Late 1970’s, 1980’s

— New languages (functional; object-oriented)
— New architectures (RISC, parallel machines, caches, ...)

— Back-end improvements: Optimization, Register
Allocation, Automatic parallelization

* 1990s

— Improved techniques for compiling object oriented code
e Efficiency in the presence of dynamic dispatch and small methods

— Just-in-time compilers (JITs)

— Compiler technology to effectively use new hardware
(RISC, parallel machines, complex memory hierarchies)

Some History

e Last decade

— Compilation techniques in many new places

* E.g., parsing, semantic analysis, source-to-source
translation used for software analysis, verification,
security

— Phased compilation — blurring the lines between
“compile time” and “runtime”

* Programs can generate and compile specialized
versions of routines “on the fly”.

e Can use machine learning to control optimizations
— Multicore: parallelism everywhere!

Any questions?

P

* Don’t hesitate to ask — I’'m teaching this
course because | enjoy talking about
compilers.

* |f you have a question, it’s likely other people
do as well, but they are too shy to ask. So
yvou’ll be doing them a favor too.

e Agenda

* Introduce Scanning (part 1 of your project)

— Quick review of basic concepts of formal
grammars

— Regular expressions
— Lexical specification of programming languages

— Using finite automata to recognize regular
expressions

— Scanners and Tokens

Winter 2013 UW CSE 401 (Michael Ringenburg)

e Programming Language
Specifications

* Since the 1960s, the syntax of every significant
programming language has been specified by a
formal grammar
— If you ever have the “pleasure” of reading a language

specification document, you’ll see that each section
typically consists of a formal grammar for some piece

of the syntax, followed by notes describing the
semantics.

— First done in 1959 with BNF (Backus-Naur Form)
grammar used to specify ALGOL 60 syntax

— Borrowed from the linguistics community (Chomsky)

Winter 2013 UW CSE 401 (Michael Ringenburg)

\a

* Starring Mr. Pig i

* Alphabet: a finite set of symbols and characters
— E.g., {V, K, ‘n’, 0, V", "’}

e String: a finite, possibly empty sequence of
symbols from an alphabet
— E.g., “oink”

e Language: a set of strings (possibly empty or
infinite)
— E.g., {“oink!”, “oink oink!”, “oink oink oink!”, ...}

Winter 2013 UW CSE 401 (Michael Ringenburg)

e Finite Specifications of
Possibly Infinite Languages

 Automaton — a recognizer; a machine that accepts all
strings in a language (and rejects all other strings)

— E.g., a pig detector: accepts all sequences of oinks, rejects
“moo”s or “baa”s

* Grammar — a generator that produced all strings in the
language (and nothing else)

— Unfortunately, we can’t use a pig as our grammar — no pig
(that I've met) can generate infinite “oink” sequences.

— Instead we use formal (aka mathematical) grammars.

e A particular language may be specified by many
different grammars and automata
— But, a grammar or automaton specifies only one language

Winter 2013 UW CSE 401 (Michael Ringenburg)

Language (Chomsky) hierarchy:
quick reminder

* Regular (Type-3) languages are
specified by regular expressions/
grammars and finite automata
(FAs) < SCANNING

* Context-free (Type-2) languages
are specified by context-free
grammars and pushdown
automata (PDAs) < PARSING

e Context-sensitive (Type-1)
languages ... aren’t too important

* Recursively-enumerable (Type-0)
languages are specified by

general grammars and Turing
machines

Winter 2013 UW CSE 401 (Michael Ringenburg) B-15

Example: Grammar for
Pig-ish (or Pig-ese?)

A formal grammar for our pig language could be:

P

PigTalk ::= oink PigTalk (rule 1)
| oink! (rule 2)

PigTalk can then generate, for example:

1) PigTalk ::= oink! (Rule 2)
2) Pigialk ::= oink PigTalk (Rule 1)
= oink oink! (Rule 2)
3) PigTalk ::= oink PigTalk (Rule 1)
= oink oink PigTalk (Rule 1)
= oink oink oink! (Rule 2)

Winter 2013 UW CSE 401 (Michael Ringenburg)

P

Example:
Grammar for a Tiny Language® ™

A more realistic (but still small) language:

Winter 2013

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::=id = expr ;

ifStmt ;= if (expr) statement

expr ::=id | int | expr + expr
id:=a|b|cliljlk|n]|x]|y]|z
int::=0[1]2|3|4|5|6]|7|8]|°9

UW CSE 401 (Michael Ringenburg)

More Formally

* The rules of a grammar are called productions
* Rules contain

— Nonterminal symbols: grammar variables (program,
statement, id, etc.)

— Terminal symbols: concrete syntax that appears in
programs (a, b, c, 0, 1, if, =, (,), ...

* Meaning of
nonterminal ::= <sequence of terminals and nonterminals>

— In a derivation, an instance of nonterminal can be replaced
by the sequence of terminals and nonterminals on the
right of the production

* Often there are several productions for a
nonterminal — derivations can choose any of them.

Winter 2013 UW CSE 401 (Michael Ringenburg)

Exercise 1:
Derive a simple program

program ::= statement | program statement program :i=
statement ::= assignStmt | ifStmt statement ==
assignStmt ::= id = expr ; ?22?

ifStmt ::= if (expr) statement

expr ::=id | int | expr + expr
id:=a|b|c|iljlk|n|x]y]|z
intz:=0|1]2]3|4|5|6|7]8]9

if (x) y=1+vy ;

Winter 2013 UW CSE 401 (Michael Ringenburg) B-19

Exercise 1 (solution):
Derive a simple program

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;

ifStmt ::= if (expr) statement

expr ::=id | int | expr + expr
id:=a|b|c|iljlk|n|x]y]|z
int::=0]1]12|3|4]|5|6|7]|8]|9

if (x) y=1+vy ;

This is just one possible derivation.
Many others are possible.

v

program ii=
statement ::=

ifStmt ::=

if (expr) statement ::=
if (id) statement ::
if (x) statement ::
if (x) assignStmt ::
if (x) id= expr; :
if (xX)y =expr; ::
if (X)y = expr+ expr; i=
if (X)y =int+ expr; ::=
if(x)y=1+ expr; =
if(x)y=1+1id; ::
f(x)y=1+y;

Exercise 2:
A multistatement program

program ::= statement | program statement program :i=
statement ::= assignStmt | ifStmt 22?7
assignStmt ::= id = expr ;

ifStmt ::= if (expr) statement

expr ::=id | int | expr + expr
id:=a|b|c|iljlk|n|x]y]|z
intz:=0|1]2]3|4|5|6|7]8]9

if (x) yv=1+vy ; x=1;

Your solution may reference your previous
derivation.

Winter 2013 UW CSE 401 (Michael Ringenburg) B-21

Exercise 2 (solution):
A multistatement program

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;

ifStmt ::= if (expr) statement

expr ::=id | int | expr + expr
id:=a|b|c|iljlk|n|x]y]|z
int::=0]1]12|3|4]|5|6|7]|8]|9

if (x) y=1+vy ; x=1

Once again, others are possible. /

program :i=
program statement ::=
program assignStmt ::=
program id = expr; ii=
program x = expr; ii=
program x = int; =
programx =1; =

Then derive program as in
the previous example.

e Alternative Notations

 There are several syntax notations for
productions in common use; all mean the
same thing. E.g.:

ifStmt ::= if (expr) statement

ifStmt — if (expr) statement
<ifStmt> ::= if (<expr>) <statement>

Winter 2013 UW CSE 401 (Michael Ringenburg)

e Parsing

e Parsing: reconstruct the derivation (syntactic
structure) of a program

* |n principle, a single recognizer could work
directly from a concrete, character-by-
character grammar

* |n practice this is never done

Winter 2013 UW CSE 401 (Michael Ringenburg)

Parsing & Scanning

* In real compilers the recognizer is split into two
phases*

— Scanner: translate source code to tokens (e.g., <int>,+,<id>)
* Reports lexical errors like illegal characters and illegal symbols.

— Parser: read token stream and reconstruct the derivation

* Reports parsing errors —i.e., source that is not derivable from the
grammar. E.g., mismatched parenthesis/braces, nonsensical
statements (x =1 +;)

source tokens

*Not always quite this clean of a separation (as we'll see later) — but true at a high level.

Winter 2013 UW CSE 401 (Michael Ringenburg) B-25

Why Separate the Scanner
and Parser?

« Standard arguments about splitting functionality into
independent pieces: Simplicity & Separation of concerns

— Scanner hides details from parser (comments, whitespace,
input files, etc.)

— Parser is easier to build; has simpler input stream (tokens)
and narrow interface
* Efficiency
— Tokens can be defined by regular expressions, and
recognized by finite automata.

e (But still often consumes a surprising amount of the compiler’s total
execution time)

— Parsing requires context-free grammars, and thus File 1/0!
pushdown automata.

— Can build automatic DFA generators for scanning (Jflex) and
automatic PDA generators for parsing (CUP).

Winter 2013 UW CSE 401 (Michael Ringenburg)

But ...

* Not always possible to separate cleanly

 Example: C/C++/Java type vs identifier

— Parser would like to know which names are types and which are
identifiers, but

— Scanner doesn’t know how things are declared ...
 Things are even uglier in Fortran 77

— E.g., myvar, my var,andmy var are all the same identifier,
keywords are not reserved, etc. Tokenizing requires context (see
Cooper & Torczon 2.6 if you are curious).

e So we hack around it somehow...

— Either use simpler grammar and disambiguate later, or communicate
between scanner & parser (with some semantic analysis mixed in).

— Real world: Often ends up very complex and hard to follow. Compiler
front ends are sometimes referred to as “black magic”.

— Not for your project though — language is simplified.

Winter 2013 UW CSE 401 (Michael Ringenburg)

Typical Tokens in
Programming Languages

* Operators & Punctuation
— 4+ = *x /() { YL 1ot <<====1=1
— Each of these is a distinct lexical class

* Keywords
— 1if while for goto return switch wvoid
— Each of these is also a distinct lexical class (not a string)

* |dentifiers (variables)

— Assingle ID lexical class, but parameterized by actual identifier (often a
pointer into a symbol table).

° Integer constants
— Assingle INT lexical class, but parameterized by numeric value

* Other constants (string, floating point, boolean, ...), etc.

Winter 2013 UW CSE 401 (Michael Ringenburg)

Principle of Longest
Match

* In most languages (exception: Fortran 77), the
scanner should pick the longest possible string to
make up the next token if there is a choice

e Example:

return maybe != iffy;

should be recognized as 5 tokens:

RETURN | | ID(maybe) | | NEQ | | ID(iffy) | | SCOLON

not 7:

RETURN | | ID(maybe) | | NOT | | ASSIGN | | IF | | ID(fy) | | SCOLON

Winter 2013 UW CSE 401 (Michael Ringenburg) B-29

e Lexical Complications

* Most modern languages are free-form
— Layout doesn’t matter
— Whitespace separates tokens

e Alternatives

— Haskell, Python — indentation and layout can
imply grouping
* And other confusions

— In C++ or Java, is >> a shift operator or the end of
two nested templates or generic classes?

Winter 2013 UW CSE 401 (Michael Ringenburg)

Regular Expressions and
Finite Automate (FAS)

* The lexical grammar (structure) of most

programming languages can be specified with
regular expressions

— (Sometimes a little cheating is needed)

 Therefore, tokens can be recognized by a
deterministic finite automaton

— Can be either table-driven or built by hand based
on lexical grammar

Winter 2013 UW CSE 401 (Michael Ringenburg)

e Regular Expressions

* Defined over some alphabet 2

— For programming languages, alphabet is usually
ASCIl or Unicode

* |f reis a regular expression, L(re) is the
language (set of strings) generated by re

Winter 2013 UW CSE 401 (Michael Ringenburg)

e Fundamental REs

re |L(re) |Notes

a ({a} Singleton set, for each symbol
a in the alphabet 2

e |{ €} |Empty string
a5 |{} Empty language

These are the basic building blocks that other
regular expressions are built from.

e Operations on REs

re |L(re) Notes

rs |L(r)L(s) Concatenation — r followed by s

r|s|L(r) UL(s) |Combination (union) —rors

r* [L(r)* 0 or more occurrences of r
(Kleene closure)

Precedence: * (highest), concatenation, | (lowest)
Parentheses can be used to group REs as needed

Winter 2013 UW CSE 401 (Michael Ringenburg)

e Next time

 We'll continue discussing Regular Expressions

 We'll also discuss how to build finite automata
that recognize Regular Expressions, and show
how they are used to build scanners.

Winter 2013 UW CSE 401 (Michael Ringenburg) B-35

