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e Administrative Notes

* Reading
— Cooper & Torczon: Chapter 1, and Sections 2.1-2.4
— Try to finish by the end of the week — it’ll be helpful
for the first homework.
* First homework

— Should be out on Friday (I’ll post on course website
and send an email).

— Will be due a week from Friday (January 18).

— Note: You have 4 late days for the entire quarter. Use
them wisely (see syllabus for details).



e Reminders

* Please vote for office hours by end-of-day
Thursday (see link on course home page).

— Select whichever slots you think you could
reasonably attend.

— We will use this to help decide office hours for the
TAs and the instructor.

* Please pick your project partner, and send
mail to cse401-staff[at]cs.

— First piece of the project will be released (early)
next week, so you should pick partners this week.




Show

* |t's the time of year where the “S”-word starts
to show up occasionally in weather forecasts.

 The schedule for the quarter is tight, so if we
do have a snow day at some point, we may
have to rush through some of the material.
— If this happens, take advantage of the extra time
on the snow day to pay extra attention to the

readings — with less time to cover the material in
class, the readings become correspondingly more

Important.



e Agenda

* Finish course intro (history)

* |Introduce Scanning (part 1 of your project)

— Quick review of basic concepts of formal
grammars

— Regular expressions
— Lexical specification of programming languages

— Using finite automata to recognize regular
expressions

— Scanners and Tokens
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Some History

* Early computers — hand coded assembly language
(punchcards!)

— Hard to write anythinghc_:omplex — but earliest computers
couldn’t execute any thing that comlex.
* 1952: Grace Hopper writes first compiler (for A-0), and
coins the term “compiler”.
— Essentially a collection of mathematical subroutines that could

be called. The compiler would take a series of calls and convert
them into an executable.

— Suclcessors: A-1, A-2 (first “open source” software), and later ...
B-O!

 1957:IBM writes first real “high-level” language compiler,
for FORTRAN. (FORTRAN is high level compared to
assembly.)
— Competitive with hand-optimized code.

— Required 18 person-years (hopefully your projects won’t take
this long!)



Some History

e 1962: First bootstrapped compiler (for LISP)

— A comBiIer that was compiled by itself, rather than written in
assembly (or another language).

— Requires initially creating a very simple compiler in assembly or
another language, and then using that to compile the initial
bootstrapped compiler.

* Initial compiler may contain just a subset of the language. As this
compiler is refined to compile more of the language, the compiler itself
can begin to use more of the language.

— Much more efficient that writing in assembly (like the first
compilers).

— Great way to test a compiler.

Rest of 1960’s, into 1970’s

— Work on formalizing scanning and parsing (theory and practice).

— Automatic parser and scanner generators
* Lex (lexical analyzer) and Yacc (Yet Another Compiler Compiler)
* JFlex and Cup are direct descendants of these C-based tools.



Some History

e Late 1970’s, 1980’s

— New languages (functional; object-oriented)
— New architectures (RISC, parallel machines, caches, ...)

— Back-end improvements: Optimization, Register
Allocation, Automatic parallelization

* 1990s

— Improved techniques for compiling object oriented code
e Efficiency in the presence of dynamic dispatch and small methods

— Just-in-time compilers (JITs)

— Compiler technology to effectively use new hardware
(RISC, parallel machines, complex memory hierarchies)



Some History

e Last decade

— Compilation techniques in many new places

* E.g., parsing, semantic analysis, source-to-source
translation used for software analysis, verification,
security

— Phased compilation — blurring the lines between
“compile time” and “runtime”

* Programs can generate and compile specialized
versions of routines “on the fly”.

e Can use machine learning to control optimizations
— Multicore: parallelism everywhere!



Any questions?

P

* Don’t hesitate to ask — I’'m teaching this
course because | enjoy talking about
compilers.

* |f you have a question, it’s likely other people
do as well, but they are too shy to ask. So
yvou’ll be doing them a favor too.



e Agenda

* Introduce Scanning (part 1 of your project)

— Quick review of basic concepts of formal
grammars

— Regular expressions
— Lexical specification of programming languages

— Using finite automata to recognize regular
expressions

— Scanners and Tokens
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e Programming Language
Specifications

* Since the 1960s, the syntax of every significant
programming language has been specified by a
formal grammar
— If you ever have the “pleasure” of reading a language

specification document, you’ll see that each section
typically consists of a formal grammar for some piece

of the syntax, followed by notes describing the
semantics.

— First done in 1959 with BNF (Backus-Naur Form)
grammar used to specify ALGOL 60 syntax

— Borrowed from the linguistics community (Chomsky)
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\a

* Starring Mr. Pig i

* Alphabet: a finite set of symbols and characters
— E.g., {V, K, ‘n’, 0, V", "’}

e String: a finite, possibly empty sequence of
symbols from an alphabet
— E.g., “oink”

e Language: a set of strings (possibly empty or
infinite)
— E.g., {“oink!”, “oink oink!”, “oink oink oink!”, ...}
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e Finite Specifications of
Possibly Infinite Languages

 Automaton — a recognizer; a machine that accepts all
strings in a language (and rejects all other strings)

— E.g., a pig detector: accepts all sequences of oinks, rejects
“moo”s or “baa”s

* Grammar — a generator that produced all strings in the
language (and nothing else)

— Unfortunately, we can’t use a pig as our grammar — no pig
(that I've met) can generate infinite “oink” sequences.

— Instead we use formal (aka mathematical) grammars.

e A particular language may be specified by many
different grammars and automata
— But, a grammar or automaton specifies only one language
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Language (Chomsky) hierarchy:
quick reminder

* Regular (Type-3) languages are
specified by regular expressions/
grammars and finite automata
(FAs) < SCANNING

* Context-free (Type-2) languages
are specified by context-free
grammars and pushdown
automata (PDAs) < PARSING

e Context-sensitive (Type-1)
languages ... aren’t too important

* Recursively-enumerable (Type-0)
languages are specified by

general grammars and Turing
machines
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Example: Grammar for
Pig-ish (or Pig-ese?)

A formal grammar for our pig language could be:

P

PigTalk ::= oink PigTalk (rule 1)
| oink! (rule 2)

PigTalk can then generate, for example:

1) PigTalk ::= oink! (Rule 2)
2) Pigialk ::= oink PigTalk (Rule 1)
= oink oink! (Rule 2)
3) PigTalk ::= oink PigTalk (Rule 1)
= oink oink PigTalk (Rule 1)
= oink oink oink! (Rule 2)

Winter 2013 UW CSE 401 (Michael Ringenburg)



P

Example:
Grammar for a Tiny Language® ™

A more realistic (but still small) language:

Winter 2013

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::=id = expr ;

ifStmt ;= if ( expr ) statement

expr ::=id | int | expr + expr
id:=a|b|cliljlk|n]|x]|y]|z
int::=0[1]2|3|4|5|6]|7|8]|°9
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More Formally

* The rules of a grammar are called productions
* Rules contain

— Nonterminal symbols: grammar variables (program,
statement, id, etc.)

— Terminal symbols: concrete syntax that appears in
programs (a, b, c, 0, 1, if, =, (, ), ...

* Meaning of
nonterminal ::= <sequence of terminals and nonterminals>

— In a derivation, an instance of nonterminal can be replaced
by the sequence of terminals and nonterminals on the
right of the production

* Often there are several productions for a
nonterminal — derivations can choose any of them.
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Exercise 1:
Derive a simple program

program ::= statement | program statement program :i=
statement ::= assignStmt | ifStmt statement ==
assignStmt ::= id = expr ; ?22?

ifStmt ::= if ( expr ) statement

expr ::=id | int | expr + expr
id:=a|b|c|iljlk|n|x]y]|z
intz:=0|1]2]3|4|5|6|7]8]9

if (x) y=1+vy ;
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Exercise 1 (solution):
Derive a simple program

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;

ifStmt ::= if ( expr ) statement

expr ::=id | int | expr + expr
id:=a|b|c|iljlk|n|x]y]|z
int::=0]1]12|3|4]|5|6|7]|8]|9

if (x) y=1+vy ;

This is just one possible derivation.
Many others are possible.

v

program ii=
statement ::=

ifStmt ::=

if (expr) statement ::=
if (id) statement ::
if (x) statement ::
if (x) assignStmt ::
if (x) id= expr; :
if (xX)y =expr; ::
if (X)y = expr+ expr; i=
if (X)y =int+ expr; ::=
if(x)y=1+ expr; =
if(x)y=1+1id; ::
f(x)y=1+y;



Exercise 2:
A multistatement program

program ::= statement | program statement program :i=
statement ::= assignStmt | ifStmt 22?7
assignStmt ::= id = expr ;

ifStmt ::= if ( expr ) statement

expr ::=id | int | expr + expr
id:=a|b|c|iljlk|n|x]y]|z
intz:=0|1]2]3|4|5|6|7]8]9

if (x) yv=1+vy ; x=1;

Your solution may reference your previous
derivation.

Winter 2013 UW CSE 401 (Michael Ringenburg) B-21



Exercise 2 (solution):
A multistatement program

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;

ifStmt ::= if ( expr ) statement

expr ::=id | int | expr + expr
id:=a|b|c|iljlk|n|x]y]|z
int::=0]1]12|3|4]|5|6|7]|8]|9

if (x) y=1+vy ; x=1

Once again, others are possible. /

program :i=
program statement ::=
program assignStmt ::=
program id = expr; ii=
program x = expr; ii=
program x = int; =
programx =1; =

Then derive program as in
the previous example.



e Alternative Notations

 There are several syntax notations for
productions in common use; all mean the
same thing. E.g.:

ifStmt ::= if ( expr) statement

ifStmt — if ( expr ) statement
<ifStmt> ::= if ( <expr> ) <statement>
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e Parsing

e Parsing: reconstruct the derivation (syntactic
structure) of a program

* |n principle, a single recognizer could work
directly from a concrete, character-by-
character grammar

* |n practice this is never done
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Parsing & Scanning

* In real compilers the recognizer is split into two
phases*

— Scanner: translate source code to tokens (e.g., <int>,+,<id>)
* Reports lexical errors like illegal characters and illegal symbols.

— Parser: read token stream and reconstruct the derivation

* Reports parsing errors —i.e., source that is not derivable from the
grammar. E.g., mismatched parenthesis/braces, nonsensical
statements (x =1 +;)

source tokens

*Not always quite this clean of a separation (as we'll see later) — but true at a high level.
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Why Separate the Scanner
and Parser?

« Standard arguments about splitting functionality into
independent pieces: Simplicity & Separation of concerns

— Scanner hides details from parser (comments, whitespace,
input files, etc.)

— Parser is easier to build; has simpler input stream (tokens)
and narrow interface
* Efficiency
— Tokens can be defined by regular expressions, and
recognized by finite automata.

e (But still often consumes a surprising amount of the compiler’s total
execution time)

— Parsing requires context-free grammars, and thus File 1/0!
pushdown automata.

— Can build automatic DFA generators for scanning (Jflex) and
automatic PDA generators for parsing (CUP).
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But ...

* Not always possible to separate cleanly

 Example: C/C++/Java type vs identifier

— Parser would like to know which names are types and which are
identifiers, but

— Scanner doesn’t know how things are declared ...
 Things are even uglier in Fortran 77

— E.g., myvar, my var,andmy var are all the same identifier,
keywords are not reserved, etc. Tokenizing requires context (see
Cooper & Torczon 2.6 if you are curious).

e So we hack around it somehow...

— Either use simpler grammar and disambiguate later, or communicate
between scanner & parser (with some semantic analysis mixed in).

— Real world: Often ends up very complex and hard to follow. Compiler
front ends are sometimes referred to as “black magic”.

— Not for your project though — language is simplified.
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Typical Tokens in
Programming Languages

* Operators & Punctuation
— 4+ = *x /() { YL 1ot <<====1=1
— Each of these is a distinct lexical class

* Keywords
— 1if while for goto return switch wvoid
— Each of these is also a distinct lexical class (not a string)

* |dentifiers (variables)

— Assingle ID lexical class, but parameterized by actual identifier (often a
pointer into a symbol table).

° Integer constants
— Assingle INT lexical class, but parameterized by numeric value

* Other constants (string, floating point, boolean, ...), etc.
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Principle of Longest
Match

* In most languages (exception: Fortran 77), the
scanner should pick the longest possible string to
make up the next token if there is a choice

e Example:

return maybe != iffy;

should be recognized as 5 tokens:

RETURN | | ID(maybe) | | NEQ | | ID(iffy) | | SCOLON

not 7:

RETURN | | ID(maybe) | | NOT | | ASSIGN | | IF | | ID(fy) | | SCOLON
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e Lexical Complications

* Most modern languages are free-form
— Layout doesn’t matter
— Whitespace separates tokens

e Alternatives

— Haskell, Python — indentation and layout can
imply grouping
* And other confusions

— In C++ or Java, is >> a shift operator or the end of
two nested templates or generic classes?
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Regular Expressions and
Finite Automate (FAS)

* The lexical grammar (structure) of most

programming languages can be specified with
regular expressions

— (Sometimes a little cheating is needed)

 Therefore, tokens can be recognized by a
deterministic finite automaton

— Can be either table-driven or built by hand based
on lexical grammar
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e Regular Expressions

* Defined over some alphabet 2

— For programming languages, alphabet is usually
ASCIl or Unicode

* |f reis a regular expression, L(re ) is the
language (set of strings) generated by re
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e Fundamental REs

re |L(re) |Notes

a ({a} Singleton set, for each symbol
a in the alphabet 2

e |{ €} |Empty string
a5 |{} Empty language

These are the basic building blocks that other
regular expressions are built from.



e Operations on REs

re |L(re) Notes

rs |L(r)L(s) Concatenation — r followed by s

r|s|L(r) UL(s) |Combination (union) —rors

r* [L(r)* 0 or more occurrences of r
(Kleene closure)

Precedence: * (highest), concatenation, | (lowest)
Parentheses can be used to group REs as needed
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e Next time

 We'll continue discussing Regular Expressions

 We'll also discuss how to build finite automata
that recognize Regular Expressions, and show
how they are used to build scanners.
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