CSE 401 - Compilers

Lecture 15: Semantic Analysis, Part Il
Michael Ringenburg
Winter 2013

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Reminders/
Announcements
* Project Part 2 due Wednesday
* Midterm Friday
— Sections this week will be devoted to midterm review
* Lined up a guest lecture on register allocation of

the last day of class (3/15) from Preston Briggs

— Affiliate faculty here, who previously did some of the
foundational work in register allocation — he’s
mentioned in your textbook (Chapter 13 notes).

* Also looking at a guest lecture that week about
real-world, non-compiler applications of parsing.

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Today’s Agenda

e Symbol Tables
— And symbol tables for Minilava

* Typechecking

Winter 2013 UW CSE 401 (Michael Ringenburg)

3

’ Symbol Tables

* Primary place where information collected during
Semantic analysis is stored

* Maps identifiers to properties such as type, size,
location, etc.
* QOperations
— Lookup(id) => information
— Enter(id, information)
— Open/close scopes
* Build & use during semantics pass
— Build first from declarations
— Then use to check semantic rules
* Use (and add to) during later phases as well

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Aside:
Implementing Symbol Tables

* Big topic in old compiler courses: implementing a
hashed symbol table

* These days: use the collection classes that are
provided with the standard language libraries (Java,
CH#, C++, ML, Haskell, etc.)

— Then tune & optimize if it really matters

* In production compilers, it really matters
— Uptoapoint...

* Java:
— Map (HashMap) will handle most cases
— List (ArrayList) for ordered lists (parameters, etc.)

Winter 2013 UW CSE 401 (Michael Ringenburg) 5

’ Symbol Tables for
Minilava
* Consider this a general outline, based on
recommendations courtesy of Hal Perkins (whose
given this project many times).
— Feel free to modify to fit your needs

* A mix of global and local tables

* First Global Table — Per Program Information

— Single global table to map class names to per-class
symbol tables
* Created in a pass over class definitions in AST

* Used in remaining parts of compiler to check class types and
extract information about them (e.g., fields and methods)

Winter 2013 UW CSE 401 (Michael Ringenburg) 6

Symbol Tables for
MiniJava

* Other Global Tables — Per Class Information

— 1 Symbol table for each class

* 1 entry per method/field declared in the class
— Contents: type information, public/private/protected (if

implementing — not required in basic MinilJava), parameter types
(for methods), storage locations (offset of fields in class - will be
discussed later), etc.

— Note: Storage info probably not needed for project part 3, but

will be in part 4. Make sure it’s easy to extend your
implementation.

— In full Java, need multiple symbol tables (or more
complex symbol table) per class

* Ex.:

Java allows the same identifier to name both a method

and a field in a class — multiple namespaces

Winter 2013

UW CSE 401 (Michael Ringenburg) 7

Conceptual Diagram of
Global Tables

class foo

- Global Table: class foo
Class List Global Table / -
Field x = type, etc.

class bar

Field y = type, etc.

Method a = param/return types, etc.

This is conceptual — real

Method b

implementation will likely

have a Map for classes
(global class list table) or
fields and methods (per Field z > type, etc.

class tables)

Winter 2013

Global Table: class bar

UW CSE 401 (Michael Ringenburg) 8

Symbol Tables for
MiniJava

* Global (cont)

— All global tables persist throughout the
compilation

* And beyond in a real compiler...

— (e.g., symbolic information in Java .class or MSIL files, link-
time optimization information in gcc)

— Cray compilers generate “program libraries”, which contain
full symbols tables and full post-front-end IR for every
function in every module.

» Can use this for interprocedural optimization across
source files (modules). Traditionally, each module
compiled and optimized individually into a .o/.class file
(containing object- or byte-code).

Winter 2013 UW CSE 401 (Michael Ringenburg) 9

Symbol Tables for
MiniJava

* 1 local symbol table for each method

— 1 entry for each local variable or parameter
* Contents: type information, storage locations (offset
from stack - filled in/discussed later), etc.
— Needed only while compiling the method; in a
single pass compiler, you could discard when done
with the method

* But if type checking and code gen, etc. are done in
separate passes, this table needs to persist until we’re
done with it

* Your project implementation will be multipass

Winter 2013 UW CSE 401 (Michael Ringenburg) 10

Beyond Minilava

* What we aren’t dealing with: nested scopes
— Inner classes
— Nested scopes in methods — reuse of identifiers in parallel
or inner scopes; nested functions
* Conceptual idea: keep a stack of symbol tables
(pointers to tables, really)
— Push a new symbol table when we enter an inner scope

— Look for identifier in inner scope; if not found look at the
element above it in the stack, recursively.

— Pop symbol table when we exit scope (conceptually — but
can’t really ...)

Winter 2013 UW CSE 401 (Michael Ringenburg) 11

Scopes (Conceptual)

void foo() {
int a, b;

while (a != b) {
int x, y;

} Stack

Winter 2013 UW CSE 401 (Michael Ringenburg) 12

’ Scopes (Conceptual)

void foo() {
int a, b;

while (a != b) {
int x, y;

) Tablel (a,b) [
} Stack

Winter 2013 UW CSE 401 (Michael Ringenburg) 13

’ Scopes (Conceptual)

void foo() {
int a, b;

;hile (a !'= b) {

int x, y; Table2 (xy) |~

Tablel (a,b)
} Stack

Winter 2013 UW CSE 401 (Michael Ringenburg) 14

Scopes (Conceptual)

void foo() {
int a, b;

while (a != b) {
int x, y;

) - Tablel (a,b) *.”
} Stack

Winter 2013 UW CSE 401 (Michael Ringenburg) 15

Scopes (Conceptual)

void foo() {
int a, b;

while (a != b) {
int x, y;

} Stack

Winter 2013 UW CSE 401 (Michael Ringenburg) 16

Engineering Issues

* In multipass compilers, symbol table info needs to
persist after analysis of inner scopes for use on later
passes
— So popping can’t “really” delete the scope’s table.

— Keep around with pointer to parent scope. Effectively
creates an upside-down tree of scopes (nodes have parent
pointers rather than children pointers). Statements have
pointers to their innermost scope.

* May want to retain O(1) lookup

— Not O(depth of scope nesting) — although some compilers
just assume this will be small enough to not matter.

— Compilers that care may use hash tables with additional
information to get the scope nesting right.

Winter 2013 UW CSE 401 (Michael Ringenburg) 17

Error Recovery

e What to do when an undeclared identifier is
encountered?
— Prefer to only complain once (Why?)

— Can forge a symbol table entry for it once you’ve
complained so it will be found in the future

— Assign the forged entry a type of “unknown”

— “Unknown” is the type of all malformed expressions and is
compatible with all other types
* Allows you to only complain once! (How?)

Winter 2013 UW CSE 401 (Michael Ringenburg) 18

’ “Predefined” Things

* Many languages have some “predefined”
items (functions, classes, standard library, ...)

* Include initialization code or declarations in
the compiler to manually create symbol table
entries for these when the compiler starts up

— Rest of compiler generally doesn’t need to know

the difference between “predeclared” items and
ones found in the program

— Possible to put “standard prelude” information in
a file or data resource and use that to initialize
¢ Tradeoffs?

Winter 2013 UW CSE 401 (Michael Ringenburg)

19

’ Today’s Agenda

* Typechecking

Winter 2013 UW CSE 401 (Michael Ringenburg)

20

Types

* Types play a key role in most programming
languages. E.g.,
— Run-time safety
— Compile-time error detection

— Improved expressiveness (method or operator
overloading, for example)
— Provide information to optimizer

* Strongly typed languages — what data might be used
where

* Type qualifiers (e.g., const and restrict in C)

Winter 2013 UW CSE 401 (Michael Ringenburg) 21

Type Checking
Terminology

Static vs. dynamic typing
« static: checking done prior to execution (e.g. compile-time)
e dynamic: checking during execution
Strong vs. weak typing
« strong: guarantees no illegal operations performed
e weak: can’t make guarantees

Caveats:
* Hybrids common static dynamic
* Inconsistent usage
common strong |Java, ML Scheme, Ruby

* “untyped,” “typeless”
could mean dynamic
or weak

weak |[C PERL

Winter 2013 UW CSE 401 (Michael Ringenburg) 22

’ Type Systems

* Base Types

— Fundamental, atomic types
— Typical examples: int, double, char, bool

* Compound/Constructed Types

— Built up from other types (recursively) via type
constructors

— Constructors include arrays, records/structs/
classes, pointers, enumerations, functions,
modules, ...

Winter 2013 UW CSE 401 (Michael Ringenburg) 23

Constructed/Compound
Types

Class
Array
Name: “foo”

Type
e Field x

Dimensions: 2 3
Field y \

Winter 2013 UW CSE 401 (Michael Ringenburg) 24

’ Type Representation

* Typical compiler representations create a
shallow class hierarchy, for example:

abstract class Type {...} // orinterface
class ClassType extends Type{ ... }
class BaseType extends Type { ... }

— Should not need too many of these

Winter 2013 UW CSE 401 (Michael Ringenburg)

25

’ Types vs ASTs

* Types are not AST nodes!
— AST nodes may have a type field, however

» AST = abstract representation of source program
(including source program type info)

* Types = abstract representation of type
semantics for type checking, inference, etc.

— Can include information not explicitly represented in
the source code, or may describe types in ways more
convenient for processing

* Be sure you have a separate “type” class
hierarchy in your compiler distinct from the AST

Winter 2013 UW CSE 401 (Michael Ringenburg)

26

Base Types

P

* For each base type (int, boolean, others in other
languages), create a single object to represent it
— Base types in symbol table entries and AST nodes are
direct references to these objects
— Base type objects usually created at compiler startup

* Useful to create a type “void” object to tag
functions that do not return a value

* Also useful to create a type “unknown” object for

errors
— (“void” and “unknown” types reduce the need for
special case code in various places in the type checker
—no null type or return type fields))

Winter 2013 UW CSE 401 (Michael Ringenburg) 27

Compound Types

>

* Basic idea: use a appropriate “type
constructor” object that refers to the
component types

— Limited number of these — correspond directly to
type constructors in the language (record/struct/

class, array, function,...)

28

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Class Types

* Type for: class Id { fields and methods }
class ClassType extends Type {
Type baseClassType; // ref to base class
Map fields; // type info for fields
Map methods; // type info for methods
}

— Base class pointer, so we can check field references against base class
if we don’t find in this class.

— (Note: may not want to do this literally, depending on how class
symbol tables are represented; i.e., class symbol tables might be
useful or sufficient as the representation of the class type.)

Winter 2013 UW CSE 401 (Michael Ringenburg) 29

’ Array Types

* For regular Java this is simple: only possibility
is # of dimensions and element type

class ArrayType extends Type {
int nDims;
Type elementType;

}

* More interesting in languages like Pascal
(more complex array indexing)

Winter 2013 UW CSE 401 (Michael Ringenburg) 30

’ Methods/Functions

* Type of a method is its result type plus an ordered
list of parameter types
class MethodType extends Type {
Type resultType; // type or “void”
List parameterTypes;

}

Winter 2013 UW CSE 401 (Michael Ringenburg) 31

’ Type Equivalance

* For base types this is simple

— If you have just a single instance of each base type
(as recommend), then types are the same if and
only if they are identical

* Pointer/reference comparison in the type checker

— Normally there are well defined rules for
coercions between arithmetic types

* Compiler inserts these automatically or when
requested by programmer (casts) — often involves
inserting cast/conversion nodes in AST

* Basic MiniJava doesn’t need these — only int’s

Winter 2013 UW CSE 401 (Michael Ringenburg) 32

’ Type Equivalence for
Compound Types
* Two basic strategies

— Structural equivalence: two types are the same if they
are the same kind of type and their component types
are equivalent, recursively

* E.g., two struct types, each with exactly two int fields

— Name equivalence: two types are the same only if
they have the same name. If their structures match,
but have distinct names, they are not equal.

* lLe., two variables only have the same type if they are
declared from the same class (even if two classes are
structurally identical).

* Different language design philosophies
— Same languages use a mixture, as well

Winter 2013 UW CSE 401 (Michael Ringenburg) 33

’ Structural Equivalence

» Structural equivalence says two types are equal
iff they have same structure
— Identical base types clearly have the same structure
— if type constructors:
* same constructor
* recursively, equivalent arguments to constructor
* Ex: atomic types, array types, ML record types

* Implement with recursive implementation of
equals, or by canonicalization of types when
types created then use pointer/reference
equality

Winter 2013 UW CSE 401 (Michael Ringenburg) 34

’ Name Equivalence

* Name equivalence says that two types are equal
iff they came from the same textual occurrence
of a type constructor

— Ex: class types, C struct types (struct tag name),
datatypes in ML

— special case: type synonyms (e.g. typedef in C) do not
define new types

* Implement with pointer/reference equality
assuming appropriate representation of type info

Winter 2013 UW CSE 401 (Michael Ringenburg) 35

’ Type Equivalence and
Inheritance

* Suppose we have

class Base { ... }
class Extended extends Base { ... }

* Avariable declared with type Base has a compile-
time type of Base

* During execution, that variable may refer to an
object of class Base or any of its subclasses like
Extended (or can be null)

— Sometimes called the runtime type
— Subclasses guaranteed to have all fields/methods of
base class, so typechecking as base class suffices

Winter 2013 UW CSE 401 (Michael Ringenburg) 36

’ Type Casts

* In most languages, one can explicitly cast an
object of one type to another
— sometimes cast means a conversion (e.g., casts
between numeric types)

— sometimes cast means a change of static type
without doing any computation (casts between
pointer types or pointer and numeric types)

— With class types, may also mean upcast (free) or
downcast (runtime check)

— Note: Casts not present in basic Minilava

Winter 2013 UW CSE 401 (Michael Ringenburg) 37

’ Type Conversions
and Coercions
* In Java, we can explicitly convert an value of
type double to one of type int

— Can represent as unary operator
— Typecheck, generate code normally

* InJava, can implicitly coerce an value of type
int to one of type double

— Compiler must insert unary conversion operators,
based on result of type checking

* Once again —only ints in basic Minilava

Winter 2013 UW CSE 401 (Michael Ringenburg) 38

’ C and Java: type casts

* In C: safety/correctness of casts not checked
— Allows writing low-level code that’s type-unsafe
— Result is often implementation dependent/undefined. Not
portable, but sometimes useful.
* InJava: downcasts from superclass to subclass need
run-time check to preserve type safety

— Otherwise, might use field (or call method) that is not
present in superclass

— Static typechecker allows the cast

— Code generator introduces run-time check
* (same code needed to handle “instanceof”)

— Java’s main form of dynamic type checking

Winter 2013 UW CSE 401 (Michael Ringenburg) 39

’ Various Notions of
Equivalance
* There are usually several relations on types
that we need to deal with:

— “is the same as”

— “is assignable to”

— “is same or a subclass of”
— “is convertible to”

* Be sure to check for the right one(s)

Winter 2013 UW CSE 401 (Michael Ringenburg) 40

’ Useful Compiler
Functions

* Create a handful of methods to decide different
kinds of type compatibility:
— Types are identical
— Type t1is assignment compatible with t2
— Parameter list is compatible with types of expressions in

the call

* Usual modularity reasons: isolates these decisions in
one place and hides the actual type representation
from the rest of the compiler

* Probably belongs in the same package with the type
representation classes (package for dealing with
types)

Winter 2013 UW CSE 401 (Michael Ringenburg) 41

’ Implementing Type
Checking for MiniJava

* Create multiple visitors for the AST

* First pass/passes: gather class information
— Collect global type information for classes
— Could do this in one pass, or might want to do one pass to
collect class information, then a second one to collect per-
class information about fields, methods — you decide
* Next set of passes: go through method bodies to
check types, other semantic constraints

Winter 2013 UW CSE 401 (Michael Ringenburg) 42

’ Disclaimer

* This discussion of semantics, type
representation, etc. should give you a good
idea of what needs to be done in your project,
but you’ll need to adapt the ideas to the
project specifics.

— Project part 3 out later this week — targeting
Thursday (day after part 2 is due).

* You'll also find good ideas in your compiler

book(s).

Winter 2013 UW CSE 401 (Michael Ringenburg) 43

’ Coming Attractions

* Need to start thinking about translating to object
code (actually x86(-64) assembly language, the
default for this project)

* Next lectures

— x86 overview (as a target for simple compilers)

— Runtime representation of classes, objects, data, and
method stack frames

— Assembly language code for higher-level language
statements

* And there’s a midterm on Friday!

Winter 2013 UW CSE 401 (Michael Ringenburg) 44

