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’ Reminders/
Announcements
* Project Part 2 due Wednesday
* Midterm Friday
— Sections this week will be devoted to midterm review
* Lined up a guest lecture on register allocation of

the last day of class (3/15) from Preston Briggs

— Affiliate faculty here, who previously did some of the
foundational work in register allocation — he’s
mentioned in your textbook (Chapter 13 notes).

* Also looking at a guest lecture that week about
real-world, non-compiler applications of parsing.
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’ Today’s Agenda

e Symbol Tables
— And symbol tables for Minilava

* Typechecking
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’ Symbol Tables

* Primary place where information collected during
Semantic analysis is stored

* Maps identifiers to properties such as type, size,
location, etc.
* QOperations
— Lookup(id) => information
— Enter(id, information)
— Open/close scopes
* Build & use during semantics pass
— Build first from declarations
— Then use to check semantic rules
* Use (and add to) during later phases as well
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’ Aside:
Implementing Symbol Tables

* Big topic in old compiler courses: implementing a
hashed symbol table

* These days: use the collection classes that are
provided with the standard language libraries (Java,
CH#, C++, ML, Haskell, etc.)

— Then tune & optimize if it really matters

* In production compilers, it really matters
— Uptoapoint...

* Java:
— Map (HashMap) will handle most cases
— List (ArrayList) for ordered lists (parameters, etc.)
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’ Symbol Tables for
Minilava
* Consider this a general outline, based on
recommendations courtesy of Hal Perkins (whose
given this project many times).
— Feel free to modify to fit your needs

* A mix of global and local tables

* First Global Table — Per Program Information

— Single global table to map class names to per-class
symbol tables
* Created in a pass over class definitions in AST

* Used in remaining parts of compiler to check class types and
extract information about them (e.g., fields and methods)
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Symbol Tables for
MiniJava

* Other Global Tables — Per Class Information

— 1 Symbol table for each class

* 1 entry per method/field declared in the class
— Contents: type information, public/private/protected (if

implementing — not required in basic MinilJava), parameter types
(for methods), storage locations (offset of fields in class - will be
discussed later), etc.

— Note: Storage info probably not needed for project part 3, but

will be in part 4. Make sure it’s easy to extend your
implementation.

— In full Java, need multiple symbol tables (or more
complex symbol table) per class

* Ex.:

Java allows the same identifier to name both a method

and a field in a class — multiple namespaces

Winter 2013

UW CSE 401 (Michael Ringenburg) 7

Conceptual Diagram of
Global Tables

class foo

- Global Table: class foo
Class List Global Table / -
Field x = type, etc.

class bar

Field y = type, etc.

Method a = param/return types, etc.

This is conceptual — real

Method b

implementation will likely

have a Map for classes
(global class list table) or
fields and methods (per Field z > type, etc.

class tables)

Winter 2013

Global Table: class bar
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Symbol Tables for
MiniJava

* Global (cont)

— All global tables persist throughout the
compilation

* And beyond in a real compiler...

— (e.g., symbolic information in Java .class or MSIL files, link-
time optimization information in gcc)

— Cray compilers generate “program libraries”, which contain
full symbols tables and full post-front-end IR for every
function in every module.

» Can use this for interprocedural optimization across
source files (modules). Traditionally, each module
compiled and optimized individually into a .o/.class file
(containing object- or byte-code).
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Symbol Tables for
MiniJava

* 1 local symbol table for each method

— 1 entry for each local variable or parameter
* Contents: type information, storage locations (offset
from stack - filled in/discussed later), etc.
— Needed only while compiling the method; in a
single pass compiler, you could discard when done
with the method

* But if type checking and code gen, etc. are done in
separate passes, this table needs to persist until we’re
done with it

* Your project implementation will be multipass
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Beyond Minilava

* What we aren’t dealing with: nested scopes
— Inner classes
— Nested scopes in methods — reuse of identifiers in parallel
or inner scopes; nested functions
* Conceptual idea: keep a stack of symbol tables
(pointers to tables, really)
— Push a new symbol table when we enter an inner scope

— Look for identifier in inner scope; if not found look at the
element above it in the stack, recursively.

— Pop symbol table when we exit scope (conceptually — but
can’t really ...)
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Scopes (Conceptual)

void foo() {
int a, b;

while (a != b) {
int x, y;

} Stack
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’ Scopes (Conceptual)

void foo() {
int a, b;

while (a != b) {
int x, y;

) Tablel (a,b) [
} Stack

Winter 2013 UW CSE 401 (Michael Ringenburg) 13

’ Scopes (Conceptual)

void foo() {
int a, b;

;hile (a !'= b) {

int x, y; Table2 (xy) |~

Tablel (a,b)
} Stack
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Scopes (Conceptual)

void foo() {
int a, b;

while (a != b) {
int x, y;

) - Tablel (a,b) \\\\*.”
} Stack
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Scopes (Conceptual)

void foo() {
int a, b;

while (a != b) {
int x, y;

} Stack
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Engineering Issues

* In multipass compilers, symbol table info needs to
persist after analysis of inner scopes for use on later
passes
— So popping can’t “really” delete the scope’s table.

— Keep around with pointer to parent scope. Effectively
creates an upside-down tree of scopes (nodes have parent
pointers rather than children pointers). Statements have
pointers to their innermost scope.

* May want to retain O(1) lookup

— Not O(depth of scope nesting) — although some compilers
just assume this will be small enough to not matter.

— Compilers that care may use hash tables with additional
information to get the scope nesting right.
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Error Recovery

e What to do when an undeclared identifier is
encountered?
— Prefer to only complain once (Why?)

— Can forge a symbol table entry for it once you’ve
complained so it will be found in the future

— Assign the forged entry a type of “unknown”

— “Unknown” is the type of all malformed expressions and is
compatible with all other types
* Allows you to only complain once! (How?)
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’ “Predefined” Things

* Many languages have some “predefined”
items (functions, classes, standard library, ...)

* Include initialization code or declarations in
the compiler to manually create symbol table
entries for these when the compiler starts up

— Rest of compiler generally doesn’t need to know

the difference between “predeclared” items and
ones found in the program

— Possible to put “standard prelude” information in
a file or data resource and use that to initialize
¢ Tradeoffs?
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’ Today’s Agenda

* Typechecking
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Types

* Types play a key role in most programming
languages. E.g.,
— Run-time safety
— Compile-time error detection

— Improved expressiveness (method or operator
overloading, for example)
— Provide information to optimizer

* Strongly typed languages — what data might be used
where

* Type qualifiers (e.g., const and restrict in C)
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Type Checking
Terminology

Static vs. dynamic typing
« static: checking done prior to execution (e.g. compile-time)
e dynamic: checking during execution
Strong vs. weak typing
« strong: guarantees no illegal operations performed
e weak: can’t make guarantees

Caveats:
*  Hybrids common static dynamic
* Inconsistent usage
common strong |Java, ML Scheme, Ruby

*  “untyped,” “typeless”
could mean dynamic
or weak

weak |[C PERL
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’ Type Systems

* Base Types

— Fundamental, atomic types
— Typical examples: int, double, char, bool

* Compound/Constructed Types

— Built up from other types (recursively) via type
constructors

— Constructors include arrays, records/structs/
classes, pointers, enumerations, functions,
modules, ...
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Constructed/Compound
Types

Class
Array
Name: “foo”

Type
e Field x

Dimensions: 2 3
Field y \
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’ Type Representation

* Typical compiler representations create a
shallow class hierarchy, for example:

abstract class Type {...} // orinterface
class ClassType extends Type{ ... }
class BaseType extends Type { ... }

— Should not need too many of these
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’ Types vs ASTs

* Types are not AST nodes!
— AST nodes may have a type field, however

» AST = abstract representation of source program
(including source program type info)

* Types = abstract representation of type
semantics for type checking, inference, etc.

— Can include information not explicitly represented in
the source code, or may describe types in ways more
convenient for processing

* Be sure you have a separate “type” class
hierarchy in your compiler distinct from the AST
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Base Types

P

* For each base type (int, boolean, others in other
languages), create a single object to represent it
— Base types in symbol table entries and AST nodes are
direct references to these objects
— Base type objects usually created at compiler startup

* Useful to create a type “void” object to tag
functions that do not return a value

* Also useful to create a type “unknown” object for

errors
— (“void” and “unknown” types reduce the need for
special case code in various places in the type checker
—no null type or return type fields))
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Compound Types

>

* Basic idea: use a appropriate “type
constructor” object that refers to the
component types

— Limited number of these — correspond directly to
type constructors in the language (record/struct/

class, array, function,...)

28
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’ Class Types

* Type for: class Id { fields and methods }
class ClassType extends Type {
Type baseClassType; // ref to base class
Map fields; // type info for fields
Map methods; // type info for methods
}

— Base class pointer, so we can check field references against base class
if we don’t find in this class.

— (Note: may not want to do this literally, depending on how class
symbol tables are represented; i.e., class symbol tables might be
useful or sufficient as the representation of the class type.)
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’ Array Types

* For regular Java this is simple: only possibility
is # of dimensions and element type

class ArrayType extends Type {
int nDims;
Type elementType;

}

* More interesting in languages like Pascal
(more complex array indexing)
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’ Methods/Functions

* Type of a method is its result type plus an ordered
list of parameter types
class MethodType extends Type {
Type resultType; // type or “void”
List parameterTypes;

}
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’ Type Equivalance

* For base types this is simple

— If you have just a single instance of each base type
(as recommend), then types are the same if and
only if they are identical

* Pointer/reference comparison in the type checker

— Normally there are well defined rules for
coercions between arithmetic types

* Compiler inserts these automatically or when
requested by programmer (casts) — often involves
inserting cast/conversion nodes in AST

* Basic MiniJava doesn’t need these — only int’s
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’ Type Equivalence for
Compound Types
* Two basic strategies

— Structural equivalence: two types are the same if they
are the same kind of type and their component types
are equivalent, recursively

* E.g., two struct types, each with exactly two int fields

— Name equivalence: two types are the same only if
they have the same name. If their structures match,
but have distinct names, they are not equal.

* lLe., two variables only have the same type if they are
declared from the same class (even if two classes are
structurally identical).

* Different language design philosophies
— Same languages use a mixture, as well
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’ Structural Equivalence

» Structural equivalence says two types are equal
iff they have same structure
— Identical base types clearly have the same structure
— if type constructors:
* same constructor
* recursively, equivalent arguments to constructor
* Ex: atomic types, array types, ML record types

* Implement with recursive implementation of
equals, or by canonicalization of types when
types created then use pointer/reference
equality
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’ Name Equivalence

* Name equivalence says that two types are equal
iff they came from the same textual occurrence
of a type constructor

— Ex: class types, C struct types (struct tag name),
datatypes in ML

— special case: type synonyms (e.g. typedef in C) do not
define new types

* Implement with pointer/reference equality
assuming appropriate representation of type info

Winter 2013 UW CSE 401 (Michael Ringenburg) 35

’ Type Equivalence and
Inheritance

* Suppose we have

class Base { ... }
class Extended extends Base { ... }

* Avariable declared with type Base has a compile-
time type of Base

* During execution, that variable may refer to an
object of class Base or any of its subclasses like
Extended (or can be null)

— Sometimes called the runtime type
— Subclasses guaranteed to have all fields/methods of
base class, so typechecking as base class suffices
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’ Type Casts

* In most languages, one can explicitly cast an
object of one type to another
— sometimes cast means a conversion (e.g., casts
between numeric types)

— sometimes cast means a change of static type
without doing any computation (casts between
pointer types or pointer and numeric types)

— With class types, may also mean upcast (free) or
downcast (runtime check)

— Note: Casts not present in basic Minilava
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’ Type Conversions
and Coercions
* In Java, we can explicitly convert an value of
type double to one of type int

— Can represent as unary operator
— Typecheck, generate code normally

* InJava, can implicitly coerce an value of type
int to one of type double

— Compiler must insert unary conversion operators,
based on result of type checking

* Once again —only ints in basic Minilava
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’ C and Java: type casts

* In C: safety/correctness of casts not checked
— Allows writing low-level code that’s type-unsafe
— Result is often implementation dependent/undefined. Not
portable, but sometimes useful.
* InJava: downcasts from superclass to subclass need
run-time check to preserve type safety

— Otherwise, might use field (or call method) that is not
present in superclass

— Static typechecker allows the cast

— Code generator introduces run-time check
* (same code needed to handle “instanceof”)

— Java’s main form of dynamic type checking
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’ Various Notions of
Equivalance
* There are usually several relations on types
that we need to deal with:

— “is the same as”

— “is assignable to”

— “is same or a subclass of”
— “is convertible to”

* Be sure to check for the right one(s)
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’ Useful Compiler
Functions

* Create a handful of methods to decide different
kinds of type compatibility:
— Types are identical
— Type t1is assignment compatible with t2
— Parameter list is compatible with types of expressions in

the call

* Usual modularity reasons: isolates these decisions in
one place and hides the actual type representation
from the rest of the compiler

* Probably belongs in the same package with the type
representation classes (package for dealing with
types)
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’ Implementing Type
Checking for MiniJava

* Create multiple visitors for the AST

* First pass/passes: gather class information
— Collect global type information for classes
— Could do this in one pass, or might want to do one pass to
collect class information, then a second one to collect per-
class information about fields, methods — you decide
* Next set of passes: go through method bodies to
check types, other semantic constraints
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’ Disclaimer

* This discussion of semantics, type
representation, etc. should give you a good
idea of what needs to be done in your project,
but you’ll need to adapt the ideas to the
project specifics.

— Project part 3 out later this week — targeting
Thursday (day after part 2 is due).

* You'll also find good ideas in your compiler

book(s).
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’ Coming Attractions

* Need to start thinking about translating to object
code (actually x86(-64) assembly language, the
default for this project)

* Next lectures

— x86 overview (as a target for simple compilers)

— Runtime representation of classes, objects, data, and
method stack frames

— Assembly language code for higher-level language
statements

* And there’s a midterm on Friday!
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