CSE 401 — Compilers

Lecture 13: Semantic Analysis, Part |
Michael Ringenburg
Winter 2013

Winter 2013 UW CSE 401 (Michael Ringenburg)

’ Reminders

* Project part 2 due in 1 week (Wednesday,
February 13).

* Midterm a week from this coming Friday
(Friday, February 15).

— Midterm will cover material up to and including
this Friday’s lecture (February 8). So, scanning,
parsing, and some semantic analysis. l.e., the
compiler front end.

Winter 2013 UW CSE 401 (Michael Ringenburg)




9 Agenda For The
Next Week
* Static semantic analysis

— What properties can we check/enforce, and how?

— What else can we glean about the program from
walking the AST?

* Types

* Constant Folding

* Attribute grammars

* Representing types

* Symbol tables

* You will need some of this for project part 3

Winter 2013 UW CSE 401 (Michael Ringenburg)

Example: What do we need /s
to check to compile this?

class C{ class Main {
int a; public static void
C(int initial) { main(String[] args) {
a = initial; Cc=new C(17);
} c.setA(42);
void setA(int val) { }
a =val; }
}
}

Winter 2013 UW CSE 401 (Michael Ringenburg) 4




9 Beyond Syntax

* There is a level of correctness that is not captured by
a context-free grammar
— Has a variable been declared?
— Are types consistent in an expression?
— In the assignment x=y, is y assignable to x?

— Does a method call have the right number and types of
parameters?

— In a selector p.q, is g a method or field of class instance p?
— Is variable x guaranteed to be initialized before it is used?
— In p.q, could p be null?

— Etc.

Winter 2013 UW CSE 401 (Michael Ringenburg) 5

’ Checked Properties

* Some enforced at compile time, others at run
time (typically depends on language spec).

* Different languages have different requirements
— E.g., Cvs. Java typing rules, initialization requirements

— Some of these properties are often desirable in
programs, even if the languages doesn’t require them.

— Compilers shouldn’t enforce a property that is not
required by the language (but can warn).

— However, there are static checkers for some of these
properties that use compiler-style algorithms.

Winter 2013 UW CSE 401 (Michael Ringenburg) 6




What else do we need to
know to generate code?

* Where are fields allocated in an object?

* How big are objects? (i.e., how much storage needs to
be allocated by new)

* Where are local variables stored when a method is
called?

— Stack? What offset? Or exclusively in register? Which?
— Aside: what happens to registers when a method is called?
* Which methods are associated with an object/class?

— In particular, how do we figure out which method to call
based on the run-time type of an object?

Winter 2013 UW CSE 401 (Michael Ringenburg) 7

Semantic Analysis

* Main tasks:
— Extract types and other information from the program
— Check language rules that go beyond the context-free grammar
— Resolve names
* Relate declarations and uses of each variable
— “Understand” the program well enough for synthesis
* E.g., sizes, layouts of classes/structs
* Key data structure: Symbol tables
— Map each identifier in the program to information about it
(kind, type, etc.)
* This is typically considered the final part of the “front end”
of the compiler (once complete, know whether or not
program is legal).

Winter 2013 UW CSE 401 (Michael Ringenburg) 8




Constant Folding

* Constant folding is a simple optimization that
computes at compile-time the results of operations
whose operands are all constants (e.g., integer literals)

* It is often applied many times during compilation, as
certain other optimizations may reveal additional
folding opportunities

— E.g., constant propagation may cause a variable access to
be replaced with a constant.

* Many compilers perform the first pass during the front
end semantic analysis phase.

— Can be done via a depth-first traversal of the AST.

Winter 2013 UW CSE 401 (Michael Ringenburg) 9

Example: AST and depth-first folding
traversal

x=1+2;

y = (2%5 + 5)/x;

During later optimization/analysis phases, we may be able to prove that x does not
change between the two statements, in which case we could propagate the folded
constant value of x forward to it's usage in the computation of y’s value. After that
propagation, a subsequent folding phase could then eliminate the division.

Winter 2013 UW CSE 401 (Michael Ringenburg) 10




Some Kinds of Semantic

Information
Information Generated From Used to process
Symbol names Declarations Expressions,
(variables, methods) statements
Type information Declarations, Operations
expressions
Memory layout Assigned by compiler | Target code
information generation
Values Constants Expressions
Winter 2013 UW CSE 401 (Michael Ringenburg) 11

What do we need for
semantic checking?

* For each language construct we want to know:

— What semantic rules should be checked
* Specified by language definition (type compatibility,
required initialization, etc.)
— For an expression, what is its type (used to check
whether the expression is legal in the current context)
* Computing the type of an expression is sometimes referred
to as “inferring the type” (although this an overloaded
term).
— For declarations, what information needs to be
captured to use elsewhere

Winter 2013 UW CSE 401 (Michael Ringenburg) 12




A Sampling of Semantic
Checks and Computations

* Appearance of a name in an expression: id
— Check: Symbol has been declared and is in scope

— Compute: Inferred type is the declared type of
symbol

* Constant: v
— Compute: Inferred type and value are explicit
— Example: 42.0 has type double and value 42.0

Winter 2013 UW CSE 401 (Michael Ringenburg) 13

A Sampling of Semantic
Checks and Computations

* Binary operator: exp, op exp,
— Check: exp, and exp, have compatible types

* Either identical, or well-defined conversion to
appropriate types

* Types are compatible with op
* Example: 42 + true fails, 20 + 21.9999 passes
— Compute: Inferred type of expression is a function
of the operator and operand types

* Example: 20 + 21.999 has type double, 42 + #,
the answer” has type String (in Java).

Winter 2013 UW CSE 401 (Michael Ringenburg) 14




A Sampling of Semantic
Checks and Computations

e Assignment: exp, = exp,
— Check: exp; is assignable (not a constant or expression)

— Check: exp, and exp, have (assignment-)compatible types
¢ |dentical, or

* Type of exp, can be (automatically) converted to exp, (e.g., char to
int), or

* Type of exp, is a subclass of type of exp, (can be decided at
compile time)

* Example:x + 5 = 4fails,x = 42 passesif xin an integer or
double, fails if x is a boolean

* Ex:Object a = new Integer(); Number b = aj; also
fails (a’s static type not a subclass of b’s type).

— Compute: Inferred type is type of exp,

Winter 2013 UW CSE 401 (Michael Ringenburg) 15

A Sampling of Semantic
Checks and Computations

* Cast: (expl) exp2
— Check: expl is a type
— Check: exp2 either

* Has same type as expl
* Can be converted to type exp1l (e.g., double to int)
* Downcast: is a superclass of expl
— May generate a runtime error is exp2 isn’t really an exp1l, e.g.,
animal a = new animal(); dog d = (dog)a;
where dog extends animal.
* Upcast: is the same or a subclass of expl

— Compute: Inferred type is expl

Winter 2013 UW CSE 401 (Michael Ringenburg) 16




A Sampling of Semantic
Checks and Computations

* Field reference: exp.f
— Check: exp has a reference type (class instance)
— Check: The class of exp has a field named f
— Compute: Inferred type is declared type of f

Winter 2013 UW CSE 401 (Michael Ringenburg) 17

A Sampling of Semantic
Checks and Computations

* Method call: exp.m(e,, e,, ..., e,)
— Check: exp is a reference type (class instance)
— Check: The class of exp has a method named m
— Check: The method exp.m has n parameters

— Check: Each argument has a type that can be
assigned to the associated parameter

* “Assignment compatible”, like our assignment checking

— Compute: Inferred type is given by method
declaration return type (possibly void)

Winter 2013 UW CSE 401 (Michael Ringenburg) 18




A Sampling of Semantic
Checks and Computations

* Return statement: “return exp;” or “return;”
* Check:

— If the method is non-void:

* The expression can be assigned to a variable with the
declared return type of the method (if the method is not
void) — exactly the same test as for assignment statement

— If the method is void:
* There’s no expression

* Don’t infer types of statements (just expressions)

Winter 2013 UW CSE 401 (Michael Ringenburg) 19

’ Attribute Grammars

* A systematic way to think about semantic
analysis

* Formalize properties checked/computed
during semantic analysis and relate them to
grammar productions in the CFG.

* Sometimes used directly, but even when not,
AGs are a useful way to organize the analysis
and think about it

Winter 2013 UW CSE 401 (Michael Ringenburg) 20




9 Attribute Grammars

* |dea: associate attributes with each node in the
syntax tree

* Examples of attributes
— Type information
— Storage information

— Assignable (e.g., expression vs variable — lvalue vs
rvalue for C/C++ programmers)

— Value (for constant expressions)
— etc. ...

* Notation: X.a if a is an attribute of node X

Winter 2013 UW CSE 401 (Michael Ringenburg) 21

Attribute Example: (1+2) * (6 / 2) * x

Given exp ::= INT
Let exp.val = INT
Given exp ::=id
Let exp.val = UNK
Given exp ::= exp; <op> exp,
Let exp.val = exp,.val <op> exp2.val
Where UNK <op> INT =
INT <op> UNK =
UNK

Winter 2013 UW CSE 401 (Michael Ringenburg) 22




9 Next time

* More on attribute grammars, plus a deeper
example.

» Symbol Tables (and symbol tables for Minilava
compilers).

Winter 2013 UW CSE 401 (Michael Ringenburg) 23




