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’ Reminders

* Project part 2 due in 1 week (Wednesday,
February 13).

* Midterm a week from this coming Friday
(Friday, February 15).

— Midterm will cover material up to and including
this Friday’s lecture (February 8). So, scanning,
parsing, and some semantic analysis. l.e., the
compiler front end.
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9 Agenda For The
Next Week
* Static semantic analysis

— What properties can we check/enforce, and how?

— What else can we glean about the program from
walking the AST?

* Types

* Constant Folding

* Attribute grammars

* Representing types

* Symbol tables

* You will need some of this for project part 3
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Example: What do we need /s
to check to compile this?

class C{ class Main {
int a; public static void
C(int initial) { main(String[] args) {
a = initial; Cc=new C(17);
} c.setA(42);
void setA(int val) { }
a =val; }
}
}
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9 Beyond Syntax

* There is a level of correctness that is not captured by
a context-free grammar
— Has a variable been declared?
— Are types consistent in an expression?
— In the assignment x=y, is y assignable to x?

— Does a method call have the right number and types of
parameters?

— In a selector p.q, is g a method or field of class instance p?
— Is variable x guaranteed to be initialized before it is used?
— In p.q, could p be null?

— Etc.
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’ Checked Properties

* Some enforced at compile time, others at run
time (typically depends on language spec).

* Different languages have different requirements
— E.g., Cvs. Java typing rules, initialization requirements

— Some of these properties are often desirable in
programs, even if the languages doesn’t require them.

— Compilers shouldn’t enforce a property that is not
required by the language (but can warn).

— However, there are static checkers for some of these
properties that use compiler-style algorithms.
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What else do we need to
know to generate code?

* Where are fields allocated in an object?

* How big are objects? (i.e., how much storage needs to
be allocated by new)

* Where are local variables stored when a method is
called?

— Stack? What offset? Or exclusively in register? Which?
— Aside: what happens to registers when a method is called?
* Which methods are associated with an object/class?

— In particular, how do we figure out which method to call
based on the run-time type of an object?
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Semantic Analysis

* Main tasks:
— Extract types and other information from the program
— Check language rules that go beyond the context-free grammar
— Resolve names
* Relate declarations and uses of each variable
— “Understand” the program well enough for synthesis
* E.g., sizes, layouts of classes/structs
* Key data structure: Symbol tables
— Map each identifier in the program to information about it
(kind, type, etc.)
* This is typically considered the final part of the “front end”
of the compiler (once complete, know whether or not
program is legal).
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Constant Folding

* Constant folding is a simple optimization that
computes at compile-time the results of operations
whose operands are all constants (e.g., integer literals)

* It is often applied many times during compilation, as
certain other optimizations may reveal additional
folding opportunities

— E.g., constant propagation may cause a variable access to
be replaced with a constant.

* Many compilers perform the first pass during the front
end semantic analysis phase.

— Can be done via a depth-first traversal of the AST.
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Example: AST and depth-first folding
traversal

x=1+2;

y = (2%5 + 5)/x;

During later optimization/analysis phases, we may be able to prove that x does not
change between the two statements, in which case we could propagate the folded
constant value of x forward to it's usage in the computation of y’s value. After that
propagation, a subsequent folding phase could then eliminate the division.
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Some Kinds of Semantic

Information
Information Generated From Used to process
Symbol names Declarations Expressions,
(variables, methods) statements
Type information Declarations, Operations
expressions
Memory layout Assigned by compiler | Target code
information generation
Values Constants Expressions
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What do we need for
semantic checking?

* For each language construct we want to know:

— What semantic rules should be checked
* Specified by language definition (type compatibility,
required initialization, etc.)
— For an expression, what is its type (used to check
whether the expression is legal in the current context)
* Computing the type of an expression is sometimes referred
to as “inferring the type” (although this an overloaded
term).
— For declarations, what information needs to be
captured to use elsewhere
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A Sampling of Semantic
Checks and Computations

* Appearance of a name in an expression: id
— Check: Symbol has been declared and is in scope

— Compute: Inferred type is the declared type of
symbol

* Constant: v
— Compute: Inferred type and value are explicit
— Example: 42.0 has type double and value 42.0
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A Sampling of Semantic
Checks and Computations

* Binary operator: exp, op exp,
— Check: exp, and exp, have compatible types

* Either identical, or well-defined conversion to
appropriate types

* Types are compatible with op
* Example: 42 + true fails, 20 + 21.9999 passes
— Compute: Inferred type of expression is a function
of the operator and operand types

* Example: 20 + 21.999 has type double, 42 + #,
the answer” has type String (in Java).
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A Sampling of Semantic
Checks and Computations

e Assignment: exp, = exp,
— Check: exp; is assignable (not a constant or expression)

— Check: exp, and exp, have (assignment-)compatible types
¢ |dentical, or

* Type of exp, can be (automatically) converted to exp, (e.g., char to
int), or

* Type of exp, is a subclass of type of exp, (can be decided at
compile time)

* Example:x + 5 = 4fails,x = 42 passesif xin an integer or
double, fails if x is a boolean

* Ex:Object a = new Integer(); Number b = aj; also
fails (a’s static type not a subclass of b’s type).

— Compute: Inferred type is type of exp,
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A Sampling of Semantic
Checks and Computations

* Cast: (expl) exp2
— Check: expl is a type
— Check: exp2 either

* Has same type as expl
* Can be converted to type exp1l (e.g., double to int)
* Downcast: is a superclass of expl
— May generate a runtime error is exp2 isn’t really an exp1l, e.g.,
animal a = new animal(); dog d = (dog)a;
where dog extends animal.
* Upcast: is the same or a subclass of expl

— Compute: Inferred type is expl
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A Sampling of Semantic
Checks and Computations

* Field reference: exp.f
— Check: exp has a reference type (class instance)
— Check: The class of exp has a field named f
— Compute: Inferred type is declared type of f
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A Sampling of Semantic
Checks and Computations

* Method call: exp.m(e,, e,, ..., e,)
— Check: exp is a reference type (class instance)
— Check: The class of exp has a method named m
— Check: The method exp.m has n parameters

— Check: Each argument has a type that can be
assigned to the associated parameter

* “Assignment compatible”, like our assignment checking

— Compute: Inferred type is given by method
declaration return type (possibly void)
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A Sampling of Semantic
Checks and Computations

* Return statement: “return exp;” or “return;”
* Check:

— If the method is non-void:

* The expression can be assigned to a variable with the
declared return type of the method (if the method is not
void) — exactly the same test as for assignment statement

— If the method is void:
* There’s no expression

* Don’t infer types of statements (just expressions)
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’ Attribute Grammars

* A systematic way to think about semantic
analysis

* Formalize properties checked/computed
during semantic analysis and relate them to
grammar productions in the CFG.

* Sometimes used directly, but even when not,
AGs are a useful way to organize the analysis
and think about it
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9 Attribute Grammars

* |dea: associate attributes with each node in the
syntax tree

* Examples of attributes
— Type information
— Storage information

— Assignable (e.g., expression vs variable — lvalue vs
rvalue for C/C++ programmers)

— Value (for constant expressions)
— etc. ...

* Notation: X.a if a is an attribute of node X
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Attribute Example: (1+2) * (6 / 2) * x

Given exp ::= INT
Let exp.val = INT
Given exp ::=id
Let exp.val = UNK
Given exp ::= exp; <op> exp,
Let exp.val = exp,.val <op> exp2.val
Where UNK <op> INT =
INT <op> UNK =
UNK
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9 Next time

* More on attribute grammars, plus a deeper
example.

» Symbol Tables (and symbol tables for Minilava
compilers).
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