CSE 401 — Compilers

Course Introduction

Michael Ringenburg
¥ Winter 2013 (Happy New Year!)

Winter 2013 UW CSE 401 (Michael Ringenburg)

e Credits

* Giving credit where it is due:

— This course borrows heavily from previous
versions here at UW (particularly Hal Perkins)

— Also from UW CSE PMP 501 (Perkins)

— And my undergraduate compilers course,
Dartmouth CS 48 (Cormen), from 1999.

* | still remember the project, vividly ©

Winter 2013 UW CSE 401 (Michael Ringenburg) A-2

’ Agenda

* Introductions

e Administrivia

 What’s a compiler, and how does it work (at a
high level)?

 Why study compilers?

* A brief history of compilers

Winter 2013 UW CSE 401 (Michael Ringenburg) A-3

e Who Am |?

* Michael (or Mike) Ringenburg

— “Final”-year PhD student, working with Dan
Grossman and Luis Ceze.

— Spent 8 years writing compilers for Cray
supercomputers, 5 of those as the technical lead
for the XMT auto-parallelizing compiler.

— Consult with Cray/YarcData about compilers and
the URIKA graph database every Thursday.

— Office: CSE 212, there most days except Thursday
— “Official” office hours: TBD (Vote on the Doodle!)

— Email: miker[at]cs.washington.edu

e **Special Note**

* | may need to miss a class or two in March,
with little notice ... We are expecting our
second child in mid-March.

e | will try to finish all the material needed for
the project before then.

 We will try to find someone to cover any
lecture(s) | need to miss — but be sure to check
email for any last minute cancellations or
changes.

9 TAsS

e Zachary Stein

— Email: steinz[at]cs.washington.edu
— Office Hours: TBD (Vote on the Doodle!)

* Laure Thompson

— Email: laurejt[at]cs.washington.edu
— Office Hours: TBD (Vote on the Doodle!)

Winter 2013 UW CSE 401 (Michael Ringenburg) A-6

e Agenda

Administrivia (noun): the tiresome but
© essential details that must be taken care of

/ and tasks that must be performed in running
e Administrivia an organization. (www.freedictionary.com)

 What’s a compiler, and how does it work (at a
high level)?

 Why study compilers?

* A brief history of compilers

Winter 2013 UW CSE 401 (Michael Ringenburg) A-7

e Prerequisites

* A little confusing due to the new core curriculum

» Official prereq: (326 & 378) | (332 & 351)
— E.g., data structures and machine organization
* | assume most of you have taken 332 and 351,

since the older prereqgs have not been offered
recently.

— Let me know if this is not correct.

— For this course, the main difference is the amount of
exposure to x86-64 assembly language.

— We'll review what you need to know for the project.

e Overloads

 The class is full. But - if you’'re interested and
haven’t been able to register, | have a course
overload form with me.

— Come see me after class to sign the form.

— | hope to be able to take a few more (but it
depends on whether we can fit in this room!)

— The prerequisites are important — otherwise you
may slow the class (and your project team) down.

e But a mix of the old and new prereqs is probably okay
(e.g., 326 and 351, or 332 and 378) .

e Course Meetings

* Lectures
— MWEF 12:30-1:20 here (EEB 045 —right here!)

e Sections Thursdays
— AA: 12:30 (SAV 131), TA: TBD
— AB: 1:30 (EEB 037), TA: TBD

— Some sections will deliver important, project-related
material, so please attend.

— Locations may change — we are working on getting
them in the same building

— No sections this week — not far enough along yet

9 Communications

* Course web site (http://www.cs.washington.edu/
education/courses/cse401/13wi/)

e Discussion board
— For anything related to the course

— Join in! Help each other out. Staff will monitor the
board, but helping each other is a great way to learn.

* Mailing list: automatically subscribed if you are
enrolled.

o Staff list: cse401-staff[at]cs.washington.edu

— We prefer you send questions here, rather than to
individual TAs or instructor.

Winter 2013 UW CSE 401 (Michael Ringenburg) A-11

e Requirements & Grading

* Primary goal of this course is to write your own
compiler (in teams of two). Grading reflects this.

* Roughly
— 55% project

— 15% individual written homeworks (probably 3, so 5%
each)

— 10% midterm exam (February 157)
— 15% final exam (Thursday, March 21, 8:30am ®, here)

— 5% other (be a good course citizen)
We reserve the right to adjust as needed

e CSE 401 Course Project

* Best way to learn about compilers is to build one
yourself!

— You’ll also learn how to use Jflex/Cup, which are
useful even if you never write a real compiler

* Course project

— Mini Java compiler: classes, objects, etc.
e Basically, Java cut down to essentials
* From the Appel textbook (but you don’t need that text)

— Generate executable x86-64 code

— Completed in steps through the quarter

 Where wind up at the end is the biggest part, but the
intermediate steps will count towards your grade as well.

e Project Groups

* You should work in teams of two
— Pair programming encouraged

* Project should run on lab linux machines (or attu)
when built with ant.

— Project page has link to CSE Virtual Machine info
(virtually run CSE linux environment at home)

* Pick partners soon (by the end of this week
would be best)

— Send course staff an email letting us know who your
partner is.

Books

EEEEEEEEEEE

* Four good books, all on Eng. Lib. Reserve:

— Cooper & Torczon, Engineering a Compiler.

3 “Official text” New edition last year, but first is
still good (and very similar).

— Appel, Modern Compiler Implementation in
Java, 2nd ed. MiniJava adapted from here.

— Aho, Lam, Sethi, Ullman, “Dragon Book”, 2nd
ed (but 1st ed is also fine)

. — Fischer, Cytron, LeBlanc, Crafting a Compiler

Winter 2013 UW CSE 401 (Michael Ringenburg) A-15

Principles, Techniques, & Tools

Crafting

e Academic Integrity

* We want a cooperative group working
together to do great stuff!

* But: you must never misrepresent work done
by someone else as your own, without proper
credit

 Know the rules —ask if in doubt or if tempted

9 Agenda

 Introductions

e Administrivia
 What’s a compiler, and how does it work (at
a high level)?

 Why study compilers?

* A brief history of compilers

Winter 2013 UW CSE 401 (Michael Ringenburg) A-17

e What do compilers do?

* How do turn this into something the computer
can execute?

int nPos = 0;
int k = 0;
while (k < length) {
if (a[k] > 0) {
nPos++;
}
}

* The computer only knows 1’s & 0’s

* Using a compiler (and/or an interpreter)
— We’ll discuss the differences in a few slides

9 Structure of a Compiler

* At a high level, compilers have two pieces:

— Front end: read source code
* Parse the source, understand its structure

— Back end: write executable

* Generate equivalent target language program. May
optimize (improve) code, but must not change behavior.

Winter 2013 UW CSE 401 (Michael Ringenburg) A-19

Compiler must...

* recognize legal programs (& complain about illegal
ones)

* generate correct code

— Programmer’s favorite pastime is blaming their buggy
code on “compiler bugs”. ©

* manage runtime storage of all variables/data

* agree with OS (loader) and linker on target format

Winter 2013 UW CSE 401 (Michael Ringenburg) A-20

9 How does this happen?

e Phases communicate via Intermediate
Representations, a.k.a., “IR”.

— Front end maps source into IR
— Back end maps IR to target machine code

— Often multiple IRs produced by different phases of front/
back ends — higher level at first, lower level in later phases

Winter 2013 UW CSE 401 (Michael Ringenburg) A-21

Front End

source tokens IR

* Usually split into two main parts

— Scanner: Responsible for converting character stream to token
stream: operation, variable, constant, etc.

* Also: strips out white space, comments
— Parser: Reads token stream; generates IR

* (Semantics analysis can happen here, or immediately afterwards)

* Both of these can be generated automatically

— Use a formal grammar to specify source language (e.g., Java)

— Tools read the grammar and generate scanner & parser (e.g.,
lex and yacc for C, or JFlex and CUP for Java)

Winter 2013 UW CSE 401 (Michael Ringenburg) A-22

e Scanner Output Example

* |Input text

// Look, I wrote a comment! I’'m a good programmer!
if (x >=y) y = 42;

e Token Stream

IF | | LPAREN | | ID(x) || GEQ | | ID(y)

RPAREN | | ID(y) | | BECOMES | | INT(42) | | SCOLON

— Notes: tokens are atomic items, not character strings;

comments & whitespace are not tokens (in most languages,
ahem, FORTRAN)

* Tokens may have associated data, e.g., a value or a variable name.

Winter 2013 UW CSE 401 (Michael Ringenburg) A-23

Parser Output (IR)

* Given token stream from scanner, parser must
produce output that conveys meaning of program.
e Most common is an abstract syntax tree (“AST”)
— Essential meaning of program without syntactic noise

— Nodes are operations, children are operands +
e E.g.,,1+1-Parent: +, Child1: 1, Child2: 1 D
] ?] 1 E|

 Many different forms of IR used in compilers
— Engineering tradeoffs have changed over time

— Tradeoffs (and IRs) also can vary between different phases
of compilation.

// Look,

if (x >=y) vy

 Token Stream Input

I wrote a comment!

Parser Example

= 42;

IF | | LPAREN

ID(x)

GEQ

ID(y)

RPAREN

ID(y)

BECOMES

INT(42)

SCOLON

I'm a good programmer!

e Abstract Syntax Tree

=

k=

(assion

e Static Semantic Analysis

* During and/or after parsing, checks that
program is legal, and collects info for back end

— Type checking

— Check language requirements like proper
declarations/initializations (e.g. Java locals), etc.

— Collect other information used by back end
analysis (e.g., scoping, aliasing restrictions)

e Key data structure: Symbol Table(s)
— Maps names -> meaning/types/details

Back End

* Responsibilities
— Translate IR into target machine code
— Should produce “good” code

e “good” = fast, compact, low power (pick some)

* Optimization phases translate code into semantically
equivalent but “better” code.

— Should use machine resources effectively
* Registers
* |nstructions
* Memory hierarchy

Winter 2013 UW CSE 401 (Michael Ringenburg) A-27

Back End Structure

P

* Typically split into two major parts
— “Optimization” — code improvements, e.g.,
 Common subexpression elimination:

(X+y) * (xX+y) t=x+vy; t * ¢t

e Constant folding: (1+2) * x 3 * x

* Optimization phases often interleaved with analysis
phases to better understand program meaning/know
what transformations preserve that meaning

— Target Code Generation (machine specific)
* |Instruction selection & scheduling, register allocation

The Result

* |[nput

* Qutput
if (x >=vy) mov eax,[ebp+16]
y = 42; cmp eax,|[ebp-8]
jl L17
e AST iParser mov [ebp-8],42
L17:
ﬁ. Back End
Winter 2013

UW CSE 401 (Michael Ringenburg) A-29

* Programs can be compiled or interpreted (or in
some cases both)

e Compiler

— A program that translates a program from one
language (the source) to another (the target)

— In some cases the source and target can even be the
same.

* Interpreter

— A program that reads a source program and produces
the results of executing that program on some input

’ Common Issues

* Compilers and interpreters both must read
the input — a stream of characters — and
“understand” it: front-end analysis phase

while(k<length){<nl><tab>if(al[k]>0
) <nl> <tab> <tab>{nPos + + ;}<nl> <tab>}

Winter 2013 UW CSE 401 (Michael Ringenburg) A-31

e Compiler

* Read and analyze entire program

* Translate to semantically equivalent program
in another language

— Presumably easier or more efficient to execute
e Offline process

* Tradeoff: compile-time overhead
(preprocessing) vs execution performance

Typically implemented with (e
Compilers

* FORTRAN, C, C++, COBOL, other programming
languages, (La)TeX, SQL (databases), VHDL (a
hardware description language), many others

e Particularly appropriate if significant
optimization wanted/needed

Interpreter

* |Interpreter
— Typically implemented with “execution engine” model
— Program analysis interleaved with execution

running = true;

while (running) {
analyze next statement;
execute that statement;

}

— Usually requires repeated analysis of individual statements
(particularly in loops, functions)
e But - hybrid approaches can avoid this ...

— But: immediate execution, good debugging/interaction, etc.

Often implemented with
Interpreters

e Javascript, PERL, Python, Ruby, awk, sed,

shells (bash), Scheme/Lisp/ML, postscript/pdf,
machine simulators

e Particularly efficient if interpreter overhead is

low relative to execution cost of individual
statements

— But even if not (machine simulators), flexibility,
immediacy, or portability may be worth it

e Hybrid approaches

 Compiler generates byte code intermediate
language, e.g., compile Java source to Java Virtual
Machine .class files, then

* |Interpret byte codes directly, or

 Compile some or all byte codes to native code

— Variation: Just-In-Time compiler (JIT) — detect hot
spots & compile on the fly to native code
* Also widely use for Javascript, many functional

languages (Haskell, ML, Ruby), C# and Microsoft
Common Language Runtime, others

’ Agenda

 Introductions

e Administrivia

 What’s a compiler, and how does it work (at a
high level)?

 Why study compilers?

* A brief history of compilers

Winter 2013 UW CSE 401 (Michael Ringenburg) A-37

e Why Study Compilers?

 Become a better programmer(!)

— Insight into interaction between high-level
language source, compilers, and hardware

— Understanding of implementation techniques,
how code maps to hardware

— Better intuition about what your code does

— Understanding how compilers optimize code
helps you write code that is easier to optimize

* And not waste time making optimization that the
compiler would do as well or better.

e Why Study Compilers?

* Compiler techniques are everywhere
— Parsing (“little” languages, interpreters, XML)

— Software tools (verifiers, checkers, ...)
— Database engines, query languages

— Text processing

* Tex/LaTex -> dvi -> Postscript -> pdf
— Hardware: VHDL; model-checking tools
— Mathematics (Mathematica, Matlab)

*~J

e Why Study Compilers

* Fascinating blend of theory and engineering

— Lots of beautiful theory around compilers

— But also interesting engineering challenges and
tradeoffs, particularly in optimization
* Ordering of optimization phases
* What'’s good for some programs may not be good for others

— Plus some very difficult problems (NP-hard or worse)

e E.g., register allocation is equivalent to graph-coloring

* Need to come up with good-enough approximations/
heuristics

*~J

e Why Study Compilers

 Draws ideas from many parts of CSE
— Al: Greedy algorithms, heuristic search

— Algorithms: graph algorithms, dynamic programming,
approximation algorithms

— Theory: Grammars, DFAs and PDAs, pattern matching,
fixed-point algorithms

— Systems: Interaction with OS, runtimes

— Architecture: pipelines, instruction set use, memory
hierarchy management, locality

*~J

e Why Study Compilers

* You might even write a compiler some day!

— You will write parsers and interpreters for little
languages, if not bigger things
« Command languages, configuration files, XML, network
protocols, ...
— If you like working with compilers, and are good at
it, there are many jobs available:

* Cray, Intel, Microsoft, AMD, and others all have their
own compilers that are regularly updated.

* Processor arms race is effectively a “perpetual
employment act” for compiler writers.

’ Agenda

 Introductions

e Administrivia

 What’s a compiler, and how does it work (at a
high level)?

 Why study compilers?
* A brief history of compilers

— Moved to next lecture (Wednesday)

Winter 2013 UW CSE 401 (Michael Ringenburg) A-43

