!'_ CSE 401 — Compilers

Overview and Administrivia
Hal Perkins
Autumn 2011

9/27/2011 © 2002-11 Hal Perkins & UW CSE

A-1

i Credits

= Some direct ancestors of this quarter:
= UW CSE 401 (Chambers, Snyder, Notkin...)
« UW CSE PMP 582/501 (Perkins)
= Cornell CS 412-3 (Teitelbaum, Perkins)
= Rice CS 412 (Cooper, Kennedy, Torczon)

= Many books (Appel; Cooper/Torczon; Aho,
[[Lam,] Sethi,] Ullman [Dragon Book],
Fischer, Cytron , LeBlanc; Muchnick, ...)

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-2

i Agenda

= Introductions

= Administrivia

= What's a compiler?

= Why you want to take this course
= & a little history if time

9/27/2011 © 2002-11 Hal Perkins & UW CSE

A-3

i CSE 401 Personnel

s Instructor: Hal Perkins
=« CSE 548; perkins|[at]cs

= Office hours: tbd + dropins, etc.

= TAs: Sam Fout, Evan Herbst
= Office hours, etc. tbd.

= Youl!ll

9/27/2011 © 2002-11 Hal Perkins & UW CSE

A-4

i So whadda ya know?

= The revenge of the new core curriculum
= Official prereq: (326 & 378) | (332 & 351)

» E.g., data structures and machine organization

= Who took what?
« CSE 321/322 vs CSE 311/312
=« CSE 326 vs CSE 332
« CSE 378 vs CSE 351
=« CSE 341 (now optional)

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-5

i Course Meetings

= Lectures
« MWF 12:30-1:20 here (More 230)

= Sections Thursdays
= AA: 8:30, AB: 9:30, both in More 221

= No sections this week — not far enough
along yet

9/27/2011 © 2002-11 Hal Perkins & UW CSE

A-6

i Communications

s Course web site

= Discussion board
= For anything related to the course
= Join in! Help each other out
= Mailing list
= You are automatically subscribed if you are
enrolled

= Will keep this fairly low-volume; limited to
things that everyone needs to read

9/27/2011 © 2002-11 Hal Perkins & UW CSE

A-7

i Requirements & Grading

= Roughly
= 40% project
= 15% individual written homework
= 15% midterm exam (date tbd*)
= 25% final exam
= 5% other

We reserve the right to adjust as needed

= *Midterm date: Nov. 4 (day after Thur. section)? Or
Nov. 7 (following Monday)? Preferences?

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-8

i CSE 401 Course Project

= Best way to learn

about compilers is to

build (at least par
= Course project

s of) one

= Mini Java compiler: classes, objects, etc.
= But cut down to essentials

= Generate executable x86(-64) code & run it

= Completed in steps through the quarter

= Intermediate steps to keep you on schedule but
where you wind up at the end is major part

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-9

i Project Groups

= You should work in pairs
= Pair programming strongly encouraged

= Space for group SVN repositories &
other shared files provided

= Pick partners soon (end of this week or
by beginning of next)

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-10

i Academic Integrity

= We want a cooperative group working
together to do great stuff!

= But: you must never misrepresent work
done by someone else as your own,
without proper credit

= Know the rules — ask if in doubt or if
tempted

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-11

i Books

= Four good books, all on Eng. Lib. Reserve:

= Cooper & Torczon, Engineering a Compiler.
= “Official text” New edition this year, but first
is still good.

= Appel, Modern Compiler Implementation in

“inion Java, 2nd ed. MiniJava adapted from here.

N}w,, = Aho, Lam, Sethi, Uliman, “Dragon Book"”, 2nd

- ed (but 1st ed is also fine)
. « Fischer, Cytron, LeBlanc, Crafting a Compiler

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-12

i And the point is...

= How do we execute this?

int nPos = 0O;
int k = 0;
while (k < length) {
if (a[k] > 0) {
nPos++;

§
}

= The computer only knows 1’s & 0’s

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-13

* Structure of a Compiler

= First approximation

= Front end: analysis

= Read source program and understand its
structure and meaning

= Back end: synthesis
= Generate equivalent target language program

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-14

* Compiler must...

= recognize legal programs (& complain about
illegal ones)

= generate correct code
= Manage runtime storage of all variables/data
agree with OS & linker on target format

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-15

* Implications

s Need some sort of Intermediate
Representation(s) (IR)

= Front end maps source into IR
= Back end maps IR to target machine code

Often multiple IRs — higher level at first,
lower level in later phases

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-16

source

tokens IR
4| Scanner >

» Parser ——

Front End

= Usually split into two parts

= Scanner: Responsible for converting character
stream to token stream
= Also: strips out white space, comments

= Parser: Reads token stream; generates IR
= Both of these can be generated automatically

= Source language specified by a formal grammar

= Tools read the grammar and generate scanner &
parser (either table-driven or hard-coded)

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-17

Scanner Example

= Input text

/] this statement does very little
if x >=vy)y =42;

s Token Stream

IF | | LPAREN | | ID(x) || GEQ | | ID(y)

RPAREN | | ID(y) | | BECOMES | | INT(42)

SCOLON

= Notes: tokens are atomic items, not character
strings; comments & whitespace are not tokens

9/27/2011

(in most languages — counterexample: Python)

© 2002-11 Hal Perkins & UW CSE

A-18

i Parser Output (IR)

= Many different forms

=« Engineering tradeoffs have changed over
time (e.g., memory is @mosy free these days)

= Common output from a parser is an
abstract syntax tree

= Essential meaning of the program without
the syntactic noise

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-19

‘L Parser Example

= Token Stream Input = Abstract Syntax Tree

IF | | LPAREN | | ID(x) -

GEQ || ID(y) | | RPAREN

ID(y) | | BECOMES
INT(42) | | sSCOLON ‘

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-20

i Static Semantic Analysis

= During or (more common) after parsing
= Type checking

= Check language requirements like proper
declarations, etc.

= Preliminary resource allocation

= Collect other information needed by back end
analysis and code generation

= Key data structure: Symbol Table(s)
= Maps names -> meaning/types/details

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-21

i Back End

= Responsibilities
= Translate IR into target machine code

= Should produce “"good” code
= 'good” = fast, compact, low power (pick some)

= Should use machine resources effectively
= Registers
= Instructions
= Memory hierarchy

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-22

i Back End Structure

= Typically split into two major parts
= Optimization” — code improvements
» Target Code Generation (machine specific)

= Instruction selection & scheduling
= Register allocation

= Usually walk the AST to generate lower-
level intermediate code before optimization

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-23

= Input = Output

mov eax,[ebp+16]
cmp eax,[ebp-8]

jl L17
mov [ebp-8],42
L17:

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-24

i Interpreters & Compilers

= Compiler

= A program that translates a program from
one language (the source) to another (the
target)

= Interpreter

= A program that reads a source program
and produces the results of executing that
program on some input

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-25

i Common Issues

= Compilers and interpreters both must
read the input — a stream of characters
— and “understand” it: front-end
analysis phase

while(k<length){<nl><tab>if(a[k]>0
) <nl> <tab> <tab>{nPos + + ;} <nl> <tab> }

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-26

i Compiler

= Read and analyze entire program

= Translate to semantically equivalent
program in another language

= Presumably easier or more efficient to execute
= Offline process

= Tradeoff: compile-time overhead
(preprocessing) vs execution performance

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-27

Typically implemented with
i Compilers

= FORTRAN, C, C++, COBOL, other
programming languages, (La)TeX, SQL
(databases), VHDL, many others

= Particularly appropriate if significant
optimization wanted/needed

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-28

Interpreter

= Interpreter
= EXxecution engine

= Program analysis interleaved with execution
running = true;
while (running) {
analyze next statement;
execute that statement;

}

« Usually requires repeated analysis of individual
statements (particularly in loops, functions)

= But: immediate execution, good debugging &
interaction, etc.

9/27/2011 © 2002-11 Hal Perkins & UW CSE

A-29

Often implemented with
i interpreters

= Javascript, PERL, Python, Ruby, awk,
sed, shells (bash), Scheme/Lisp/ML,
postscript/pdf, machine simulators

= Particularly efficient if interpreter
overhead is low relative to execution
cost of individual statements
= But even if not (machine simulators),

flexibility, immediacy, or portability may be
worth it

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-30

i Hybrid approaches

Compiler generates byte code intermediate
language, e.g. compile Java source to Java
Virtual Machine .class files, then

Interpret byte codes directly, or

Compile some or all byte codes to native code

= Variation: Just-In-Time compiler (JIT) — detect hot
spots & compile on the fly to native code

Also wide use for Javascript, many functional
languages (Haskell, ML, Ruby), C# and
Microsoft Common Language Runtime, others

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-31

i Why Study Compilers? (1)

= Become a better programmer(!)

= Insight into interaction between languages,
compilers, and hardware

=« Understanding of implementation
techniques, how code maps to hardware

= What is all that stuff in the debugger
anyway?

= Better intuition about what your code does

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-32

i Why Study Compilers? (2)

= Compiler techniques are everywhere
= Parsing ("little” languages, interpreters, XML)
= Software tools (verifiers, checkers, ...)
= Database engines, query languages
= Al, etc.: domain-specific languages

= Text processing
= Tex/LaTex -> dvi -> Postscript -> pdf

« Hardware: VHDL; model-checking tools
= Mathematics (Mathematica, Matlab)

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-33

i Why Study Compilers? (3)

= Fascinating blend of theory and
engineering
= Direct applications of theory to practice
= Parsing, scanning, static analysis

= Plus some very difficult problems (NP-hard
or worse)
= Resource allocation, “optimization”, etc.
= Need to come up with good-enough
approximations/heuristics

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-34

i Why Study Compilers? (4)

= Draws ideas from many parts of CSE
= AI: Greedy algorithms, heuristic search

= Algorithms: graph algorithms, dynamic
programming, approximation algorithms

= Theory: Grammars, DFAs and PDAs, pattern
matching, fixed-point algorithms

= Systems: Allocation & naming, synchronization,
locality

= Architecture: pipelines, instruction set use,
memory hierarchy management, locality

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-35

i Why Study Compilers? (5)

= You might even write a compiler some
day!

= You wil/ write parsers and interpreters
for little languages, if not bigger things

= Command languages, configuration files,
XML, network protocaols, ...

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-36

i Some History (1)

= 1950’s. Existence proof

= FORTRAN I (1954) — competitive with
hand-optimized code

= 1960’s

= New languages: ALGOL, LISP, COBOL,
SIMULA

= Formal notations for syntax, esp. BNF

»« Fundamental implementation techniques
« Stack frames, recursive procedures, etc.

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-37

i Some History (2)

s 1970's

= Syntax: formal methods for producing
compiler front-ends; many theorems

= Late 1970’s, 1980’s

= New languages (functional; object-oriented
- Smalltalk)

= New architectures (RISC machines, parallel
machines, memory hierarchy issues)

= More attention to back-end issues

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-38

i Some History (3)

x 1990s

= Techniques for compiling objects and
classes, efficiency in the presence of
dynamic dispatch and small methods (Self,
Smalltalk — now common in JVMs, etc.)

= Just-in-time compilers (JITS)

= Compiler technology critical to effective use
of new hardware (RISC, parallel machines,
complex memory hierarchies)

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-39

i Some History (4)

= Last decade
= Compilation techniques in many new places
= Software analysis, verification, security

= Phased compilation — blurring the lines
between “compile time” and “runtime”

= Using machine learning techniques to control
optimizations(!)

« Dynamic languages — e.g., JavaScript, ...
= The new 800 |b gorilla - multicore

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-40

Compiler (and related) Turing

i Awards

= 1966 Alan Perlis = 1984 Niklaus Wirth

= 1972 Edsger Dijkstra = 1987 John Cocke

= 1974 Donald Knuth = 1991 Robin Milner

= 1976 Michael Rabinand = 2001 Ole-Johan Dahl
Dana Scott and Kristen Nygaard

= 1977 John Backus = 2003 Alan Kay

= 1978 Bob Floyd = 2005 Peter Naur

= 1979 Ken Iverson = 2006 Fran Allen

= 1980 Tony Hoare = 2008 Barbara Liskov

9/27/2011 © 2002-11 Hal Perkins & UW CSE 41

i Any questions?

= Your job is to ask questions to be sure
you understand what'’s happening and
to slow me down

= Otherwise, I'll barrel on ahead ©

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-42

i Coming Attractions

= Quick review of formal grammars

= Lexical analysis — scanning
= Background for first part of the project

= Followed by parsing ...

= Start reading: ch. 1, 2.1-2.4

9/27/2011 © 2002-11 Hal Perkins & UW CSE A-43

