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Threads and shared memory

� Multithreading lets multiple threads run concurrently
� Each thread has its own local variables (stack and 

registers), but...
� All threads share one memory 

l b l / t ti + h bj t� globals / statics + heap objects
� Use memory to communicate ☺ or interfere /

� Becoming more common to exploit multicore hardware� Becoming more common to exploit multicore hardware
� Basic use / issues: CSE303, CSE378, CSE451 

� New: CSE332, CSE333, maybe CSE331, , y
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Naïve view

The following almost works
1. Define your programming language “as usual”

� Don’t think about > 1 thread

2. Compile the code like you’ve learned all quarter
Don’t think about > 1 thread� Don t think about > 1 thread

3. Provide a run-time library that provides threading
� Create thread
� Create/acquire/release mutual-exclusion locks
� Etc.

4 Profit4. Profit
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This lecture in one slide
The naïve approach, followed for decades, is fatally flawed
� Compiler must know threads & shared-memory exist

El it f i t ti i ti� Else it may perform incorrect optimizations
� Programmer must know threads & shared-memory exist

� The natural definition (“sequential consistency”) of how 
shared-memory works (“the memory model”) is not tractably 
implementable by compilers or hardware

� So we have less-natural weaker definitions to make language 
implementation easier.  Usually defined so that:
� If programmers avoid data races then they can ignore this
� Most compiler optimizations remain legalp p g
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Safety of optimization

The standard rule for optimization:
If, in some program context, the result of , p g ,
evaluating e1 cannot be distinguished from the 
result of evaluating e2, the compiler can substitute 
e2 for e1 in that contexte2 for e1 in that context

Now: Three gotchas that arise only with multiple 
threads and shared memorythreads and shared memory
� Examples use global variables to keep them short; same 

issues arise with shared objects in the heap
E l ill l ti i ti i J� Examples are illegal optimizations in, e.g., Java
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Gotcha #1: Speculation
(Probably the least common / well-motivated, but the 

easiest to understand)

// x and y are globals, initially 0

void foo() {
++x;
if(y==1)if(y 1)
++x;

}

3/14/2010 © 2002-09 Hal Perkins & UW CSE X3-7



Gotcha #1: Speculation

// x and y are globals, initially 0

void foo() {  optimized void foo() {   () { p () {
++x;        ========> x += 2;
if(y==1)                   if(y!=1) 
++x; --x;++x;                       x;

}                          }
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Before optimization

// x and y are globals, initially 0

Thread 1 Thread 2

void foo() {       void bar() {   
++x;               if(x==2)
if(y==1)             commence evil();y _
++x;           }

}                  
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After optimization

//// x and y are globals, initially 0

Thread 1 Thread 2

void foo() {       void bar() {   
x += 2;            if(x==2)
if(y!=1)             commence_evil();
--x;           }

}                  }

3/14/2010 © 2002-09 Hal Perkins & UW CSE X3-10



Recap

So our compiler made a change that:
� Is legal for all single-threaded programsg g p g
� Caused execution to “make up” a new value for x

So either:
� Our compiler must not do this (thread-aware)

O h l d fi i i ll hi� Or we must change our language definition to allow this 
(bad idea in this example)
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Gotcha #2:Register promotion

// x is global, initially 0

void foo(int* a, int n) {     
for(int i=0; i<n; ++i)

x += a[i];
}}

void foo(int* a, int n) {
int reg = x;     g ;
for(int i=0; i<n; ++i)

reg += a[i];
x = reg;
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Before optimization

// x is global, initially 0

// Thread 1 // Thread 2// Thread 1

void foo(int* a, int n) {
for (int i = 0; i < n; ++i)

// Thread 2

void bar() {
x = 10;for (int i = 0; i < n; ++i)

x += a[i];
}

x  10;
...

}

What happens when n == 0?
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After optimization

// x is global, initially 0

// Th d 1 // Thread 2// Thread 1

void foo(int* a, int n) {
int reg = x;

// Thread 2

void bar() {
x = 10;int reg = x;

for (int i = 0; i < n; ++i)
reg += a[i];

x = reg;

x = 10;
...

}
g;

}

What happens (sometimes) when n == 0?
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Recap
In executions where n==0, the compiler
optimization can “lose an update”

� Original code:  x==10 is guaranteed for code 
ft b th th d fi i hafter both threads finish

� Optimized code: new write of x = 0 creates� Optimized code:  new write of x = 0 creates 
new possible result
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Gotcha #3:Adjacent data

h [4]
Natural assembly for body:
movb $0 arrchar arr[4];

void foo() {     
arr[0] = (char)0;

movb $0, _arr
movb $0, _arr+1
movb $0, _arr+2

arr[0] = (char)0;
arr[1] = (char)0;
arr[2] = (char)0;

}

Assembly with one store:
movl _arr, %eax}
andl $0x000000FF, %eax
movl %eax, _arr
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Before optimization

char arr[4];

// Thread 1:
movb $0, _arr

b $0 +1

// Thread 2 
// arr[3] = ‘a’;
movb $98 arr+3movb $0, _arr+1

movb $0, _arr+2

movb $98, _arr+3
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After optimization

char arr[4];

// Thread 1:
movl _arr, %eax
andl $0x000000FF %eax

// Thread 2
// arr[3] = ‘a’;
movb $98 arr+3andl $0x000000FF, %eax

movl %eax, _arr
movb $98, _arr+3
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Recap
The clever compiler is adding the assignment 

“arr[3]=arr[3];”
� That’s fine in single-threaded code

In practice, this is a problem if:
� Your architecture doesn’t have byte-stores

� Leave space between string characters??
Y h bi fi ld i C ( d bi )� You have bit-fields in C (and no bit-stores)
� C++ specifically allows the “clever” code because there is 

no other way (so programmer must avoid simultaneous 
write to bit-fields in same struct)

3/14/2010 X3-19© 2002-09 Hal Perkins & UW CSE



Where are we
� So far have emphasized that the compiler must limit 

itself in order to be correct in the presence of threads
Thi i 401 ft ll� This is 401 after all

� You should also understand that the programmer
t t i t iti l d fi itimust accept unintuitive language definitions

� Otherwise efficient compiler/hardware  too difficult
� Simple answer: Never write code with a data race� Simple answer: Never write code with a data race
� Must discuss memory-consistency models
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Dekker’s example
� Initially, x==0 && y==0

Thread 1
x = 1; (a)
r1 = y; (b)

Thread 2
y = 1;   (c)
r2 = x; (d)

� What are possible executions?

r1  y; (b) r2  x; (d)

� What are possible executions?
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Dekker’s example
� Initially, x==0 && y==0

Thread 1 Thread 2
x = 1;  (a)
r1 = y; (b)

y = 1;  (c)
r2 = x; (d)

� What are possible executions?
� Consider interleavings of thread 1 & 2:

� abcd, acbd, acdb, cdab, cadb, cabd
� (24 permutations, but need a before b and c

before d)before d)

3/14/2010 X3-22© 2002-09 Hal Perkins & UW CSE



Dekker’s example
� Initially, x==0 && y==0

Thread 1 Thread 2

Can 1 0 && 2 0 ?

x = 1;
r1 = y;

y = 1;
r2 = x;

� Can r1 == 0 &&  r2 == 0 ?
� No interleaving gives this results, but...
� Most hardware will allow it� Most hardware will allow it 

� Store buffers; see CSE471

� Most compilers will allow it
� Why...
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Compiler reordering

� Almost every compiler optimization has the implicit 
effect of reordering reads and writes!
� Obvious example: Instruction scheduling
� Less-obvious example: Common-subexpression

eliminationelimination x=a+b;
y=a;
z=a+b; //optimize to z=x

Replacing with z=x has the effect of
moving the store to z to before the store to y!

ld l t it t b th th d th� y could see a later write to a by another thread than z sees
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Sequential consistency
� The interleaving model is called sequential 

consistency and was defined in 1979 by Lamport:
"... the result of any execution is the same as if the 
operations of all the processors were executed in 
some sequential order, and the operations of each q , p
individual processor appear in this sequence in the 
order specified by its program."
B t “ l” h d il i l t it� But no “real” hardware or compiler implements it

� So we have to tell programmers what they can
assumeassume
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Refined notion
� Guarantee sequential consistency only for 

correctly synchronized programs (Adve)
� Give the programmer rules to follow
� Promise interleaving semantics if rules are 

obeyedobeyed
� Correctly synchronized

� Must be intuitive to programmerp g
� Must not be restrictive for compiler/hardware
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Data races

� Two operations conflict if they both access a 
memory location and one is a write 

� A execution contains a data race if two adjacent 
operations from two different threads conflict

� x = 1; y = 1; r1 = y; r2 = x;

� A program is data-race-free if no sequentially 
consistent execution (i.e., interleaving) has a data 
race
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Correct synchronization

� We call a program correctly synchronized if it is 
data race free

� Basic contract – “The Grand Compromise”:
If it d t f� If programmers write data-race-free programs, 
implementers will provide sequentially consistent 
semantics

� This is the fundamental property of the  Java 
and C++ memory models
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How do we avoid races?

� Mutual exclusion:
� Thread acquires lock before accessing a shared 

variable
� Locks exist to avoid races

Thread 1 Thread 2
lock (mutex);
tmp1 = x;
tmp2 = tmp1 + 1;
x = tmp2

lock (mutex);
tmp3 = x;
tmp4 = tmp3 + 1;
x = tmp4

� Java’s volatile variables (atomics in C++)
D t ll d il ’t d

p
unlock (mutex);

p
unlock (mutex);

� Data races allowed; compiler can’t reorder
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What this means for compilers
� In the absence of synchronization, compilers may 

almost operate as if programs were single-
threadedthreaded

� Compilers must respect ordering due to 
synchronization (locks, volatiles, etc.)
� Even if “hidden” inside a function/method call

� Compilers must not introduce data races into 
correctly synchronized code co ect y sy c o ed code
� This is why Gotchas #2 and #3 are illegal for 

compilers!
They add writes that race with the program!� They add writes that race with the program!
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What happens on a race?
� In C++, undefined semantics

Thread 1
( )

Thread 2

� Valid results:

x = 1; (a)
r1 = y; (b)

y = 1;  (c)
r2 = x; (d)

� Valid results:
� r1 == 0 and r2 == 0
� r1 == 0 and r2 == 42

t ( f /*)� system(rm –rf /*);
� No such thing as a benign data race in C++!

� Hence Gotcha #1 is legal in C++ because the g
original program had a data race
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Type-safety issues
� In Java, data races cannot violate type safety

� Java promises a measure of security
� Cannot allow data races to be used on purpose 

by untrusted code to open / exploit holes
� Java memory model must provide some� Java memory model must provide some 

guarantees even in the presence of races
� Gotcha #1 is illegal in Java; cannot make up 

values
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Java reality
� The actual “memory model” (what can and can’t 

happen with reads/writes) is very complicated
� Took years by brilliant people and still had� Took years by brilliant people and still had 

problems
� Programmers willing to avoid data races do not 

need to nde stand the definitionneed to understand the definition
� There is a theorem about the definition that all data-race 

free programs behave as in the interleaving semantics
B t il it t id t h� But compiler writers must avoid gotchas
� Very roughly speaking, don’t make up values or introduce 

data races

3/14/2010 X3-33© 2002-09 Hal Perkins & UW CSE



This lecture in one slide
The naïve approach, followed for decades, is fatally flawed
� Compiler must know threads & shared-memory exist

El it f i t ti i ti� Else it may perform incorrect optimizations
� Programmer must know threads & shared-memory exist

� The natural definition (“sequential consistency”) of how 
shared-memory works (“the memory model”) is not tractably 
implementable by compilers or hardware

� So we have less-natural weaker definitions to make language 
implementation easier.  Usually defined so that:
� If programmers avoid data races then they can ignore this
� Most compiler optimizations remain legalp p g
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