
W.L. Ruzzo CSci 401 Spring 1998

Instructions: closed book, closed notes, 50 minutes, 100 points. It may be too long; don't panic.

1. (10 points) Why are most compilers broken up into a bunch of little \phases" (lexer, parser, etc.), each

doing something relatively simple?

2. (10 points) Why do most compilers separate lexical from syntactic analysis even though context-free

grammars are powerful enough to encompass both tasks?

3. (10 points) Give one example (there are many) of a common programming language feature that is

easily checked by a context-free parser but would be di�cult or impossible to check by a lexical analyzer

built acording to the principles we have discussed. Also, give an example of a feature that is di�cult

or impossible to check in the parser, but is compile-time checkable. In both cases, brie
y justify.

4. (10 points) Suppose we wanted to add character string literals to the proposed language PL/0.1.

A string literal begins and ends with the double quote character (") and may not contain unescaped

double quote characters. Any character c may be included by \escaping it" by preceeding it with a

backslash (n). I.e., if nc appears in the string literal, then c is included in the string denoted by the

string literal. The initial and �nal double quotes are, of course, excluded from the string denoted by

the literal. (In particular, note that by these rules, the only way to include a double quote in a string

is to escape it. There is one other character that must always be escaped; what is it?)

For example, "abc", "anbc", and "an"bc" are 3 legal string literals denoting the strings abc, abc,

and a"bc respectively.

Give a regular expression de�ning legal string literals. If you use any meta-notation other than the

basic union, concatenation and Kleene star operations, explain it.

Give a deterministic �nite automaton accepting legal string literals. Don't forget to indicate the initial

and �nal states.

5. (30 points) For the grammar below with start symbol E:

(a) Show the parse tree for the string \((a) " a)".

(b) Compute FIRST for each right hand side and FOLLOW for each nonterminal (in the table below).

Rule FIRST FOLLOW

(1) E ! (T)

(2) E ! a

(3) T ! E T
0

(4) T
0

! " T

(5) T
0

! �

(c) Fill in the \parsing table" below, showing for each nonterminal and each lookahead symbol which

productions (if any) could be used to expand that nonterminal when parsing a string with that

lookahead. Cells you leave blank are assumed to be cases where the parser should signal an error.

1

Lookahead Symbol

Nonterminal a () " $

E

T

T
0

(d) Is the grammar LL(1)? Why or why not?

(e) Sketch the procedure corresponding to T 0 in a recursive descent parser for this language. Include a

sketch of how the abstract syntax tree is constructed, assuming the " operator is right-associative,

i.e., that (a"a"a) = (a"(a"a)).

6. (10 points) Of the variables x1, ..., x6 declared below

type a1 = array[10] of int;

type a2 = array[10] of int;

type a3 = array[10] of bool;

var x1, x2: array[10] of int;

var x3: a1;

var x4: a1;

var x5: a2;

var x6: a3

which have name-equivalent types? Which have structurally-equivalent types?

(put a \Y" in i,j below if xi is equivalent to xj.)

7. (20 points) Suppose you were writing the type-checking phase of a C compiler, and suppose the following

was a portion of a program being compiled.

typedef struct {

int x;

} foo_t;

typedef struct {

foo_t y;

} bar_t;

int i;

bar_t *barp;

...

i = barp->y.x; /* THIS */

...

Recall that in C the indirect selection (\->") and direct selection (\.") operators have equal precedence,

and both are left associative. Sketch the abstract syntax that the parser should produce from the

statement marked THIS, indicate the type corresponding to each AST node, and brie
y describe the

processing your type checker would do in order to determine those types, and indicate the main error

conditions it would be looking for in the process.

2

