Intermediate Representations

IR in compilers

* Internal representation of input program by
compilers
— Computation expressed in the input program
— Results of program analysis
« Control-flow graphs, data-flow graphs, dependence graphs
— Symbol tables
« Book-keeping information for translation (eg., types and
addresses of variables and subroutines)
» External format of IR
— Needs to be serialized
— Allows independent passes over IR

Intermediate Representations

Decisions in IR design affect the speed and efficiency of
the compiler

Some important IR properties

— Ease of generation

— Ease of manipulation

— Procedure size

— Freedom of expression

— Level of abstraction

The importance of different properties varies between
compilers

Selecting an appropriate IR for a compiler is critical

Types of Intermediate Representations

Three major categories
e Structural
— Graphically oriented

— Heavily used in source-to-source translators, program
correctness tools

— Tend to be large
— Examples: Trees, DAGs
 Linear
— Pseudo-code for an abstract machine
— Level of abstraction varies
— Simple, compact data structures
— Easier to rearrange
— Examples: 3 address code, Stack machine code
« Hybrid
— Combination of graphs and linear code
— Example: control-flow graph

Level of Abstraction

* The level of detail exposed in an IR influences the
profitability and feasibility of different optimizations.

« Two different representations of an array reference:

load 1 =>r,

sub r,ry=>r,
load 10 =>r,
mult ryry=>r,
sub r,r;=>rg
add r, rg=>rg
load @A =7,
Add r,rg=>rg4
load rg =>ry

High level AST:
Good for memory
disambiguation

Low level linear code:
Good for address calculation

Abstract Syntax Tree

An abstract syntax tree is the procedure’s parse tree with the
nodes for most non-terminal nodes removed

Directed Acyclic Graph

A directed acyclic graph (DAG) is an AST with a unique
node for each value

* Makes sharing explicit
« Encodes redundancy

* Same expression twice means that the compiler
might arrange to evaluate it just once!

Stack Machine Code

Originally used for stack-based computers, now Java
and C#

push x

« Example: push 2
X-2*%y = pushy

multigy

subtract

Advantages

« Compact form

« Introduced names are implicit, not explicit
« Simple to generate and execute code

« Useful where code is transmitted over slow communication links
(e.g., the net)

Three Address Code

Several different representations of three address code
« Ingeneral, three address code has statements of the form:

X —yopz
With 1 operator (op) and, at most, 3 names (X, y, & z)

Example:
Zox-2%y => 2%y
Z - X—t
Advantages:

* Resembles many machines
« Introduces a new set of names (the temp results)
« Compact form

Three Address Code: Quadruples

Naive representation of three address code
« Table of k * 4 small integers

¢ Simple record structure
« Easy to reorder

¢ Explicit names

load 1Y
load r1, y loadi 2 |2
ad g rzz " mut |3 |2 |1
load r4 x load 4 |X
sub r5r4r3 sub 5 |42
RISC assembly code Quadruples

10

Three Address Code: Triples

¢ Index used as implicit name
¢ 25% less space consumed than quads
* Much harder to reorder

@) |load |y
(2) |load |2
@3 |mult | (1) |(2)
@ |load |x
G {sub |(4) |(3)

11

Implementation of MiniJava Compiler
Source +| Lexical Analyzer
Program ‘

Tokens' - Syntax Analyzer
Abstract syntax— Semantic Analyzer
trees (ASTs)

Type checked AST —
and symbol tables
Intermediate
Language ASTs
Intermediate N
Language ASTs

Target
Program 12

Symbol Tables

« After ASTs have been constructed, the compiler
must check whether the input program is type-
correct. During this type checking, a compiler
checks whether the use of names (such as
variables, functions, type names) is consistent
with their definition in the program.

» Consequently, it is necessary to remember
declarations so that we can detect inconsistencies
and misuses during type checking. This is the
task of a symbol table.

Symbol Table Entries

« What information do we need to putin an
entry for a variable in a Symbol Table?

14

Symbol Table Entries

« What information do we need to put in an
entry for a variable in a Symbol Table?

* Some obvious choices:
— Name
— Type
— Array? (then dimension information)
— Line Number (used in reporting errors)
— Scope (so we know when to deactivate it)
— Initialized? (for compile-time error checking)
— Memory Position (for compiling to Assembly)
— Others if we we're interpreting the code

15

Symbol Table Design

¢ Several data structures can be used for a
symbol table.
— Arrays
— Linked Lists
— Binary Tree
— Hash Table
— Hybrids
¢ Which are the best choices? Consider:
— Memory used
— Cost to Insert()
— Cost to LookUp()

16

Symbol Table Design

« Most compilers use

— Hash table
« Hash is often a simple function of symbol string

— Each Hash Bucket has a linked list to resolve
conflicts

¢ Our MiniJava compiler uses such a system

17

The Rest of the Story...

Representing the code is only part of an IR

There are other necessary components:
« Symbol table (already discussed)
« Constant table
— Representation, type
— Storage class, offset
« Storage map
— Overall storage layout
— Overlap information
— Virtual register assignments
¢ Others?

