
1

1

Building An Interpreter

After having done all of the analysis,
it’s possible to run the program directly
rather than compile it … and it may be

worth it

2

Compiler Passes

Analysis
of input program

(front-end)

character
stream

Lexical Analysis

Code Generation

Optimization

Intermediate
Code Generation

Semantic Analysis

Syntactic Analysis

annotated
AST

abstract
syntax tree

token
stream

target
language

intermediate
form

intermediate
form

Synthesis
of output program

(back-end)

3

Implementing A Language

Given type-checked AST program representation:
• might want to run it
• might want to analyze program properties
• might want to display aspects of program on screen for user
• ...

To run program:
• can interpret AST directly
• can generate target program that is then run

4

Compilers vs. Interpreters

Interpreter
– A program that reads a source program and

produces the results of executing that program

Compiler
– A program that translates a program from one

language (the source) to another (the target)

5

Interpreter

• Interpreter
– Execution engine
– Program execution interleaved with analysis

running = true;
while (running) {

analyze next statement;
execute that statement;

}

– May involve repeated analysis of some statements
(loops, functions)

6

Compiler

• Read and analyze entire program
• Translate to semantically equivalent program in

another language
– Presumably easier to execute or more efficient

– Should “improve” the program in some fashion

• Offline process
– Tradeoff: compile time overhead (preprocessing step) vs

execution performance

2

7

Typical Implementations

• Compilers
– FORTRAN, C, C++, Java, COBOL, etc.
– Strong need for optimization in many cases

• Interpreters
– PERL, Python, Ruby, awk, sed, sh, csh, postscript

printer, Scheme, Java VM
– Effective if interpreter overhead is low relative to

execution cost of individual statements

8

Pascal Compilers and P-code

Distribution consisted of 3 tools:
• Pascal to P-code compiler (written in Pascal)
• Pascal to P-code compiler (written in P-code)
• P-code interpreter, written in Pascal

What to do?
1. Re-write the interpreter in machine code, then you can

execute any P-code program using the interpreter!
1. Run the version of the compiler written in P-code, to compile

Pascal programs into P-code...

2. Run the resulting P-code program on the interpreter!

9

Pascal Compilers and P-code

As an optimization, also re-write the version of
the compiler written in Pascal to produce
machine code instead of P-code.

Yipee!

Use it here...

10

Hybrid approaches

• Well-known example: Java
– Compile Java source to byte codes – Java Virtual Machine

language (.class files)
– Execution

• Interpret byte codes directly, or
• Compile some or all byte codes to native code

– Just-In-Time compiler (JIT) – detect hot spots & compile on
the fly to native code

• Variation: .NET
– Compilers generate MSIL
– All IL compiled to native code before execution

11

Implementing Interpreters

Create data structures to represent run-time
program state
– values manipulated by program
– activation record (a.k.a stack frame) for each

called method
– environment to store local variable bindings
– pointer to lexically-enclosing activation

record/environment (static link)
– pointer to calling activation record (dynamic link)

• EVAL loop executing AST nodes

12

Pros and Cons of Interpretation

+ simple conceptually, easy to implement
• fast turnaround time

• good programming environments

• easy to support fancy language features

- slow to execute
• data structure for value vs. direct value

• variable lookup vs. registers or direct access

• EVAL overhead vs. direct machine instructions

• no optimizations across AST nodes

3

13

Compilation

Divide interpreter work into two parts:
• compile-time

• run-time

Compile-time does preprocessing
• perform some computations at compile-time once

• produce an equivalent program that gets run many times

Only advantage over interpreters: faster running
programs

14

Compile-time Processing

Decide representation of run-time data values

Decide where data will be stored
• registers
• format of stack frames
• global memory
• format of in-memory data structures (e.g. records, arrays)

Generate machine code to do basic operations
• just like interpreting expression, except generate code that will

evaluate it later

Do optimizations across instructions if desired

15

Compile-time vs Run-time

Dynamic linkCalling Procedure

Static linkLexically-enclosing
scope

Memory location or
register

Variable

Environment (contents
of stack frame)

Scope, symbol table

Activation record/stack
frame

Procedure

Run-timeCompile-time

16

An Interpreter for MiniJava

New Stuff Needed: Some Data Structures + some Code

Data Structures: In Evaluator subdirectory, two data
structures:

1) Data structure to represent run-time values:

Value hierarchy
– analogous to ResolvedType hierarchy
Value

IntValue

BooleanValue

ClassValue

NullValue

17

MiniJava Interpreter [continued]

2) Data structure to store Values for each variable:

Environment hierarchy
– analogous to Symbol Table hierarchy
Environment

GlobalEnvironment

NestedEnvironment

ClassEnvironment

CodeEnvironment

MethodEnvironment

And some Code:
• evaluate methods for each kind of AST class

18

Activation Records

Each call of a procedure allocates an activation record
(instance of Environment)

• Activation record stores:
• mapping from names to Value s, for each formal and local

variable in that scope (environment)
• lexically enclosing activation record (static link)

• Method activation record: also
• calling activation record (dynamic link)

• Class activation record: also
• methods (to support run-time method lookup)
• instance variable declarations, not values
• values stored in class instances, i.e.,ClassValues

4

19

Activation Records vs Symbol Tables

For each method/nested block scope in a
program:

• exactly one symbol table, storing types of names
• possibly many activation records, one per invocation, each

storing values of names

For recursive procedures,
• can have several activation records for same procedure on

stack simultaneously

All activation records have same “shape,”
described by single symbol table

20

Example

...

class Fac {

public int ComputeFac(int num) {

int numAux;
if (num < 1) {

numAux = 1;

} else {
numAux = num * this.ComputeFac(num-1);

}

return numAux;

}
}

21

Generic Evaluation Algorithm
Parallels the generic typechecking algorithm
To evaluate a program,

– recursively evaluate each of the nodes in the program’s AST, each
in the context of the environment for its enclosing scope

• on the way down, create any nested environments & context
needed

• recursively evaluate child subtrees
• on the way back up, compute the parent’s result/effect from the

children’s results
• parent controls order of evaluation of children, whether to

evaluate children

Each AST node class defines its own evaluate method, which
fills in the specifics of this recursive algorithm

Generally:
• declaration AST nodes add value bindings to the current

environment
• statement AST nodes evaluate (some of) their subtrees
• expression AST nodes evaluate their subtrees and compute &

return a result value
22

Some Key AST Evaluation Operations

void Program.evaluate() throws EvalCompilerExn;
• evaluate the whole program:

– evaluate each of the class declarations
– invoke the main class’s main method

void ClassDecl.evaluateDecl(GlobalEnvironment)
throws EvalCompilerExn;

• evaluate a class declaration
void Stmt.evaluate(CodeEnvironment) throws

EvalCompilerExn;
• evaluate a statement in the context of the givenenvironment
Value Expr.evaluate(CodeEnvironment) throws

EvalCompilerExn;
• evaluate an expression in the context of the given environment,

returning the result

23

An example evaluation operation

class IntLiteralExpr extends Expr {

int value;

Value evaluate(CodeEnvironment env)

throws EvalCompilerException {

return new IntValue(value);

}

}

24

An example evaluation operation
class AddExpr extends Expr {

Expr arg1;
Expr arg2;

Value evaluate(CodeEnvironment env)
throws EvalCompilerException {

Value arg1_value = arg1.evaluate(env);
Value arg2_value = arg2.evaluate(env);
return new IntValue(arg1_value.getIntValue()

+
arg2_value.getIntValue());

}
}

getIntValue asserts that the value is an int and
returns its value

5

25

An example evaluation operation

class VarDeclStmt extends Stmt {

String name;

Type type;

void evaluate(CodeEnvironment env)

throws EvalCompilerException {

env.declareLocalVar(name);

}

}

declareLocalVar adds a new uninitialized binding to
the current environment

26

An example evaluation operation

class VarExpr extends Expr {
String name;

Value evaluate(CodeEnvironment env)

throws EvalCompilerException {
// (record var_iface during typechecking)

return var_iface.lookupVar(env);

}
}

lookupVar looks at the kind of variable being read, and does the
right thing. For a local variable:

return env.lookupLocalVar(name);

returns contents of binding for name in env (or enclosing env)

27

An example evaluation operation

class IfStmt extends Stmt {
Expr test;
Stmt then_stmt;
Stmt else_stmt;

void evaluate(CodeEnvironment env)
throws EvalCompilerException {
Value test_value = test.evaluate(env);
if (test_value.getBooleanValue()) {

then_stmt.evaluate(env);
} else {

else_stmt.evaluate(env);
}

}
}
getBooleanValue asserts that the value is a boolean and returns its value

Controls which substatement gets evaluated

