
1

1

Building An Interpreter

After having done all of the analysis, 
it’s possible to run the program directly 
rather than compile it … and it may be 

worth it
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Implementing A Language

Given type-checked AST program representation: 
• might want to run it 
• might want to analyze program properties 
• might want to display aspects of program on screen for user 
• ... 

To run program: 
• can interpret AST directly 
• can generate target program that is then run
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Compilers vs. Interpreters

Interpreter
– A program that reads a source program and 

produces the results of executing that program

Compiler
– A program that translates a program from one 

language (the source) to another (the target)
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Interpreter

• Interpreter
– Execution engine
– Program execution interleaved with analysis

running = true;
while (running) {

analyze next statement;
execute that statement;

}

– May involve repeated analysis of some statements 
(loops, functions)
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Compiler

• Read and analyze entire program
• Translate to semantically equivalent program in 

another language
– Presumably easier to execute or more efficient

– Should “improve” the program in some fashion

• Offline process
– Tradeoff: compile time overhead (preprocessing step) vs 

execution performance
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Typical Implementations

• Compilers
– FORTRAN, C, C++, Java, COBOL, etc.
– Strong need for optimization in many cases

• Interpreters
– PERL, Python, Ruby, awk, sed, sh, csh, postscript 

printer, Scheme, Java VM
– Effective if interpreter overhead is low relative to 

execution cost of individual statements
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Pascal Compilers and P-code

Distribution consisted of 3 tools:
• Pascal to P-code compiler (written in Pascal)
• Pascal to P-code compiler (written in P-code)
• P-code interpreter, written in Pascal

What to do?
1. Re-write the interpreter in machine code, then you can 

execute any P-code program using the interpreter!
1. Run the version of the compiler written in P-code, to compile 

Pascal programs into P-code...

2. Run the resulting P-code program on the interpreter!
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Pascal Compilers and P-code

As an optimization, also re-write the version of 
the compiler written in Pascal to produce 
machine code instead of P-code.

Yipee!

Use it here...

10

Hybrid approaches

• Well-known example: Java
– Compile Java source to byte codes – Java Virtual Machine 

language (.class files)
– Execution

• Interpret byte codes directly, or
• Compile some or all byte codes to native code

– Just-In-Time compiler (JIT) – detect hot spots & compile on 
the fly to native code

• Variation: .NET
– Compilers generate MSIL
– All IL compiled to native code before execution
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Implementing Interpreters

Create data structures to represent run-time 
program state 
– values manipulated by program 
– activation record (a.k.a stack frame) for each 

called method 
– environment to store local variable bindings 
– pointer to lexically-enclosing activation 

record/environment (static link) 
– pointer to calling activation record (dynamic link) 

• EVAL loop executing AST nodes
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Pros and Cons of Interpretation

+ simple conceptually, easy to implement 
• fast turnaround time 

• good programming environments 

• easy to support fancy language features 

- slow to execute 
• data structure for value vs. direct value 

• variable lookup vs. registers or direct access 

• EVAL overhead vs. direct machine instructions 

• no optimizations across AST nodes
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Compilation

Divide interpreter work into two parts: 
• compile-time 

• run-time 

Compile-time does preprocessing 
• perform some computations at compile-time once 

• produce an equivalent program that gets run many times 

Only advantage over interpreters: faster running 
programs
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Compile-time Processing

Decide representation of run-time data values

Decide where data will be stored 
• registers 
• format of stack frames 
• global memory 
• format of in-memory data structures (e.g. records, arrays) 

Generate machine code to do basic operations 
• just like interpreting expression, except generate code that will 

evaluate it later 

Do optimizations across instructions if desired
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Compile-time vs Run-time

Dynamic linkCalling Procedure

Static linkLexically-enclosing 
scope

Memory location or 
register

Variable

Environment (contents 
of stack frame)

Scope, symbol table

Activation record/stack 
frame

Procedure

Run-timeCompile-time
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An Interpreter for MiniJava

New Stuff Needed: Some Data Structures + some Code

Data Structures: In Evaluator subdirectory, two data 
structures: 

1) Data structure to represent run-time values: 

Value hierarchy 
– analogous to ResolvedType hierarchy 
Value

IntValue

BooleanValue

ClassValue

NullValue
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MiniJava Interpreter [continued]

2) Data structure to store Values for each variable: 

Environment hierarchy 
– analogous to Symbol Table hierarchy 
Environment

GlobalEnvironment

NestedEnvironment

ClassEnvironment

CodeEnvironment

MethodEnvironment

And some Code:
• evaluate methods for each kind of AST class
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Activation Records

Each call of a procedure allocates an activation record 
(instance of Environment )

• Activation record stores: 
• mapping from names to Value s, for each formal and local 

variable in that scope (environment) 
• lexically enclosing activation record (static link) 

• Method activation record: also 
• calling activation record (dynamic link) 

• Class activation record: also 
• methods (to support run-time method lookup) 
• instance variable declarations, not values 
• values stored in class instances, i.e.,ClassValues



4

19

Activation Records vs Symbol Tables

For each method/nested block scope in a 
program: 

• exactly one symbol table, storing types of names 
• possibly many activation records, one per invocation, each 

storing values of names 

For recursive procedures, 
• can have several activation records for same procedure on 

stack simultaneously 

All activation records have same “shape,”
described by single symbol table
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Example

... 

class Fac { 

public int ComputeFac(int num) { 

int numAux; 
if (num < 1) { 

numAux = 1; 

} else { 
numAux = num * this.ComputeFac(num-1); 

} 

return numAux; 

} 
}
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Generic Evaluation Algorithm
Parallels the generic typechecking algorithm
To evaluate a program,

– recursively evaluate each of the nodes in the program’s AST, each 
in the context of the environment for its enclosing scope

• on the way down, create any nested environments & context 
needed

• recursively evaluate child subtrees
• on the way back up, compute the parent’s result/effect from the 

children’s results
• parent controls order of evaluation of children, whether to 

evaluate children

Each AST node class defines its own evaluate method, which 
fills in the specifics of this recursive algorithm

Generally:
• declaration AST nodes add value bindings to the current 

environment
• statement AST nodes evaluate (some of) their subtrees
• expression AST nodes evaluate their subtrees and compute & 

return a result value
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Some Key AST Evaluation Operations

void Program.evaluate() throws EvalCompilerExn;
• evaluate the whole program:

– evaluate each of the class declarations
– invoke the main class’s main method

void ClassDecl.evaluateDecl(GlobalEnvironment) 
throws EvalCompilerExn;

• evaluate a class declaration
void Stmt.evaluate(CodeEnvironment) throws 

EvalCompilerExn;
• evaluate a statement in the context of the givenenvironment
Value Expr.evaluate(CodeEnvironment) throws 

EvalCompilerExn;
• evaluate an expression in the context of the given environment, 

returning the result
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An example evaluation operation

class IntLiteralExpr extends Expr {

int value;

Value evaluate(CodeEnvironment env)

throws EvalCompilerException {

return new IntValue(value);

}

}
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An example evaluation operation
class AddExpr extends Expr {

Expr arg1;
Expr arg2;

Value evaluate(CodeEnvironment env)
throws EvalCompilerException {

Value arg1_value = arg1.evaluate(env);
Value arg2_value = arg2.evaluate(env);
return new IntValue(arg1_value.getIntValue()

+
arg2_value.getIntValue());

}
}

getIntValue asserts that the value is an int and 
returns its value
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An example evaluation operation

class VarDeclStmt extends Stmt {

String name;

Type type;

void evaluate(CodeEnvironment env)

throws EvalCompilerException {

env.declareLocalVar(name);

}

}

declareLocalVar adds a new uninitialized binding to 
the current environment
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An example evaluation operation

class VarExpr extends Expr {
String name;

Value evaluate(CodeEnvironment env)

throws EvalCompilerException {
// (record var_iface during typechecking)

return var_iface.lookupVar(env);

}
}

lookupVar looks at the kind of variable being read, and does the 
right thing.  For a local variable:

return env.lookupLocalVar(name);

returns contents of binding for name in env (or enclosing env)
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An example evaluation operation

class IfStmt extends Stmt {
Expr test;
Stmt then_stmt;
Stmt else_stmt;

void evaluate(CodeEnvironment env)
throws EvalCompilerException {
Value test_value = test.evaluate(env);
if (test_value.getBooleanValue()) {

then_stmt.evaluate(env);
} else {

else_stmt.evaluate(env);
}

}
}
getBooleanValue asserts that the value is a boolean and returns its value

Controls which substatement gets evaluated


