
1

1

Linking, Parallelism, Wrap-Up

CSE401

Winter 2008

2

Agenda

� Linking

� Parallelism

� What we did in this course

� Final Exam

� Evals

3

Static Linking Example

4

Libraries

� contain lots of code, you don’t need all
of it

� linkers search the library and only pull
in the code that you need.

� libraries are often stored in a special
format to make this easier.

5

Dynamic Linking

Observations:

� Several instances of a program are
often live at the same time.

� Programs share code (graphics
routines)

� Libraries often improve over time

6

Dynamic Linking (cont.)

� OS sets up a mapping so that all
instances of the same program share
the same read-only copy of the code.

2

7

Parallel Programming

8

Why Parallel Programming?

� Predict Weather

� Predict Spread of SARS

� Predict path of hurricanes

� Predict oil slick propagation

� Model growth of bio-plankton/fisheries

� Structural Simulations

� Predict path of forest fires

� Model formation of galaxies

9

do i= 1 to max,

a[i] = b[i] + c[i] * d[i]

end do

10

Approaches

� Parallel Algorithms

� Parallel Language

� Message passing (low-level)

� Parallelizing compilers

11

Fortran for parallelism

� Fortran 90 - Array language. Triplet
notation for array sections. Operations
and intrinsic functions possible on array
sections.

� High Performance Fortran (HPF) -
Similar to Fortran 90, but includes data
layout specifications to help the
compiler generate efficient code.

12

� ZPL - array-based language at UW.
Compiles into C code (highly portable).

� C* - C extended for parallelism

3

Parallelizing Compilers

Automatically transform a sequential
program into a parallel program.

1. Identify loops whose iterations can be
executed in parallel.

2. Often done in stages.

Q: Which loops can be run in parallel?

Q: How should we distribute the work/data?

14

Data Dependences

Flow dependence - RAW. Read-After-Write.
A "true" dependence. Read a value after it
has been written into a variable.

Anti-dependence - WAR. Write-After-Read.
Write a new value into a variable after the old
value has been read.

Output dependence - WAW. Write-After-
Write. Write a new value into a variable and
then later on write another value into the
same variable.

15

Example

1: A = 90;

2: B = A;

3: C = A + D

4: A = 5;

16

A parallelizing compiler must identify loops that
do not have dependences BETWEEN
ITERATIONS of the loop.

Example:

do I = 1, 1000
A(I) = B(I) + C(I)
D(I) = A(I)

end do

17

Fork one thread for each processor

Each thread executes the loop:

do I = my_lo, my_hi

A(I) = B(I) + C(I)

D(I) = A(I)

end do

Wait for all threads to finish
before proceeding.

18

Another Example

do I = 1, 1000

A(I) = B(I) + C(I)

D(I) = A(I+1)

end do

4

19

Yet Another Example

do I = 1, 1000

A(X(I)) = B(I) + C(I)

D(I) = A(X(I))

end do

20

Can we improve this?

for (i=0; i < 1000, i++){

for (j=0; j < 1000, j++){
A[j][i] = B[j][i] + C[j];

}

}

Course Project

� Start with a MiniJava complier in Java …
improve it
� Add:

� Comments

� Floating-point values

� Arrays

� Static (class) variables

� For loops

� Break Statements

� … And more

� Completed in stages over the term

� Strongly encouraged: Work in teams, but only if
joint work, not divided work

Grading Basis
•Correctness
•Clarity of design/impl
•Quality of test cases

Compiler Passes
Analysis

of input program
(front-end)

character
stream

Lexical Analysis

Code Generation

Optimization

Intermediate
Code Generation

Semantic Analysis

Syntactic Analysis

annotated
AST

abstract
syntax tree

token
stream

target
language

intermediate
form

intermediate
form

Synthesis
of output program

(back-end)

23

First Step: Lexical Analysis

“Scanning”, “tokenizing”

Read in characters, clump into tokens

� strip out whitespace & comments in the
process

24

Specifying tokens: Regular
Expressions

Example:

Ident ::= Letter AlphaNum*

Integer ::= Digit+

AlphaNum ::= Letter | Digit

Letter ::= 'a' | ... | 'z' | 'A' | ... | 'Z'

Digit ::= '0' | ... | '9'

5

25

Second Step:
Syntactic Analysis

“Parsing” -- Read in tokens, turn into a
tree based on syntactic structure

� report any errors in syntax

26

Specifying Syntax:
Context-free Grammars

EBNF is a popular notation for CFG’s
Example:

Stmt ::= if (Expr) Stmt [else Stmt]

| while (Expr) Stmt

| ID = Expr;

| ...

Expr ::= Expr + Expr | Expr < Expr | ...

| ! Expr

| Expr . ID ([Expr {, Expr}])

| ID

| Integer

| (Expr)

| ...

EBNF specifies concrete syntax of language; parser constructs tree
of the abstract syntax of the language

27

Third Step: Semantic Analysis

“Name resolution and type checking”

� Given AST:
� figure out what declaration each name refers to

� perform type checking and other static consistency checks

� Key data structure: symbol table
� maps names to info about name derived from declaration

� tree of symbol tables corresponding to nesting of scopes

� Semantic analysis steps:
1. Process each scope, top down

2. Process declarations in each scope into symbol table for
scope

3. Process body of each scope in context of symbol table

28

Fourth Step:
Intermediate Code Gen

� Given annotated AST & symbol tables, translate into
lower-level intermediate code

� Intermediate code is a separate language
� Source-language independent

� Target-machine independent

� Intermediate code is simple and regular
� Good representation for doing optimizations

Might be a reasonable target language itself, e.g. Java bytecode

29

Fifth Step: Optimization

Identify inefficiencies in intermediate or target code

Replace with equivalent but better sequences

� equivalent => "has the same externally visible behavior"

Target-independent optimizations best done on IL code

Target-dependent optimizations best done on target code

“Optimize” overly optimistic
� Optimize => “usually improve”

Scope of study for optimizations:

� Peephole, local, global (intraprocedural) and interprocedural

� Larger scope => better optimization but more cost and complexity

30

Sixth Step:
Target Machine Code Gen

Translate intermediate code into target code

� Need to do:

� Instruction selection: choose target instructions
for (subsequences) of IR instructions

� Register allocation: allocate IR code variables to
registers, spilling to memory when necessary

� Compute layout of each procedures stack frames
and other runtime data structures

� Emit target code

6

31

Why Study Compilers?

� Better Understanding Of Implementation
Issues in Programming Languages:

� How Is “This” Implemented?

� Why Does “This” Run So Slowly?

� Translation appears several places:

� Processing command line parameters

� Converting files/programs from one
language/format to another

32

CSE 401: Intro to Compiler
Construction

Goals
� Learn principles and practice of language translation

� Bring together theory and pragmatics of previous classes

� Understand compile-time vs run-time processing

� Study interactions among

� Language features

� Implementation efficiency

� Compiler complexity

� Architectural features

� Gain more experience with OO design

� Gain more experience with working in a team

� Gain experience working with SW someone else wrote

33

Final Exam
� Our final exam will be held 2:30-4:20 p.m.
Wednesday, Mar. 19, 2008 in our regular
classroom.

� The exam will be comprehensive, but will
have a focus on material covered since the
midterm.

� EC questions on material from Monday and
today.

� Ruth will hold office hours on Mon March 17
and Tues 18th, Wed 19th times TBA.

� I will post exam materials on our course web
page.

