* Linking, Parallelism, Wrap-Up

CSE401
Winter 2008

3 Agenda

= Linking

= Parallelism

= What we did in this course
= Final Exam

= Evals

Static Linking Example

Relocatable object files Executable object file

A 8 Code
Imports Tmport:
" ..)F("’ o s 1 = &M (2300)
M Exports call M (2300)
Exports L -
X N
Relocation Re.l,o,ca ton § 1 = &L (1800)
— = El 7
Code Code g 2= Y500
s B i) 13 = X (3300)
1= i
L | &M 1 = &L (1000) [« I
call M 12 1= ¥ (400) M
.‘EE Data i _'3 =X
M — Lo
1 L M: < g |Data
Dat 5
g tta g" —|x
v 1
L v

2 Libraries

= contain lots of code, you don't need all
of it

= linkers search the library and only pull
in the code that you need.

= libraries are often stored in a special
format to make this easier.

3 Dynamic Linking

Observations:

= Several instances of a program are
often live at the same time.

= Programs share code (graphics
routines)

= Libraries often improve over time

3 Dynamic Linking (cont.)

= OS sets up a mapping so that all
instances of the same program share
the same read-only copy of the code.

* Parallel Programming

5 Why Parallel Programming?

= Predict Weather

= Predict Spread of SARS

= Predict path of hurricanes

= Predict oil slick propagation

= Model growth of bio-plankton/fisheries
= Structural Simulations

= Predict path of forest fires

= Model formation of galaxies

*

doi=1to nmx,
a[i] = b[i] + c[i] * d[i]
end do

3 Approaches

= Parallel Algorithms

= Parallel Language

= Message passing (low-level)
= Parallelizing compilers

5 Fortran for parallelism

= Fortran 90 - Array language. Triplet
notation for array sections. Operations
and intrinsic functions possible on array
sections.

= High Performance Fortran (HPF) -
Similar to Fortran 90, but includes data
layout specifications to help the
compiler generate efficient code.

*

= ZPL - array-based language at UW.
Compiles into C code (highly portable).

m C* - C extended for parallelism

Parallelizing Compilers

Automatically transform a sequential
program into a parallel program.

1. Identify loops whose iterations can be
executed in parallel.

2. Often done in stages.

Q: Which loops can be run in parallel?
Q: How should we distribute the work/data?

Data Dependences

Flow dependence - RAW. Read-After-Write.
A "true" dependence. Read a value after it
has been written into a variable.

Anti-dependence - WAR. Write-After-Read.
Write a new value into a variable after the old
value has been read.

Output dependence - WAW. Write-After-
Write. Write a new value into a variable and
then later on write another value into the
same variable.

3 Example

1: A=90;
2: B=A;
3: C=A+D
4. A=5;

A parallelizing compiler must identify loops that
do not have dependences BETWEEN
ITERATIONS of the loop.

Example:

do | =1, 1000
A(l) = B(1) + (1)
D(I) = A(l)

end do

*

Fork one thread for each processor
Each thread executes the | oop:
dol =nmy_lo, nmy_hi
ACl) = B(1) + (1)
D(1) = A(l)

end do

Wait for all threads to finish
bef ore proceedi ng.

5 Another Example

do | =1, 1000
A(l) = B(l) + C(I)
D(I) = A(I+1)

end do

2 Yet Another Example

do | =1, 1000
A(C X(I)) = B(1) + C(1)
D(I) = AC X(I))

end do

2 Can we improve this?

for (i=0; i < 1000, i++){
for (j=0; j < 1000, j++){
ALjILi] = B[jI[i] + djl;

Course Project

= Start with a MiniJava complier in Java ...

improve it
= Add:
» Comments
= Floating-point values
« Arrays Grading Basis
= Static (class) variables «Correctness
= For loops «Clarity of design/impl
= Break Statements *Quiality of test cases

= ... And more
= Completed in stages over the term
= Strongly encouraged: Work in teams, but only if
joint work, not divided work

Compiler Passes

Analysis Synthesis
of input program of output program
(front-end) (back-end)

Intermediate

Lexical Analysis Code Generation

Ui
1]

|Syntactic Analysisl | Optimization |

i
L]

| Semantic Analysis | | Code Generation |

i
]

2 First Step: Lexical Analysis

”ow

“Scanning”, “tokenizing”
Read in characters, clump into tokens

= strip out whitespace & comments in the
process

Specifying tokens: Regular
Expressions

Example:
Ident ::= Letter AlphaNum*
Integer ::= Digit+
AlphaNum ::= Letter | Digit
Letter ::="a"' | ... |'Z' | 'A" | ... | 'Z
Digit ::='0"] ... | '9'

Second Step:

3 Syntactic Analysis

“Parsing” -- Read in tokens, turn into a
tree based on syntactic structure
= report any errors in syntax

Specifying Syntax:

3 Context-free Grammars

EBNF is a popular notation for CFG’s
Example:
Stmt ::= if (Expr) Stmt [else Stmt]
| while (Expr) Stmt
| ID = Expr;
| o
Expr ::= Expr + Expr | Expr < Expr | ...
| ' Expr
| Expr . ID ([Expr {, Expr}])
| ID
| Integer
| (Expr)
|
EBNF specifies concrete syntax of language; parser constructs tree
of the abstract syntax of the language 2

Third Step: Semantic Analysis

“Name resolution and type checking”
= Given AST:
= figure out what declaration each name refers to
= perform type checking and other static consistency checks
= Key data structure: symbol table
= maps names to info about name derived from declaration
= tree of symbol tables corresponding to nesting of scopes
= Semantic analysis steps:
1. Process each scope, top down

2. Process declarations in each scope into symbol table for
scope
3. Process body of each scope in context of symbol table

Fourth Step:
Intermediate Code Gen

= Given annotated AST & symbol tables, translate into
lower-level intermediate code

= Intermediate code is a separate language
= Source-language independent
= Target-machine independent

= Intermediate code is simple and regular
= Good representation for doing optimizations

Might be a reasonable target language itself, e.g. Java bytecode

Fifth Step: Optimization

Identify inefficiencies in intermediate or target code
Replace with equivalent but better sequences

= equivalent => "has the same externally visible behavior"
Target-independent optimizations best done on IL code
Target-dependent optimizations best done on target code
“Optimize” overly optimistic

= Optimize => “usually improve”

Scope of study for optimizations:

= Peephole, local, global (intraprocedural) and interprocedural
= Larger scope => better optimization but more cost and complexity

Sixth Step:
Target Machine Code Gen

Translate intermediate code into target code

= Need to do:

= Instruction selection: choose target instructions
for (subsequences) of IR instructions

= Register allocation: allocate IR code variables to
registers, spilling to memory when necessary

= Compute layout of each procedures stack frames
and other runtime data structures

= Emit target code

3 Why Study Compilers?
= Better Understanding Of Implementation

Issues in Programming Languages:
= How Is “This” Implemented?
= Why Does “This” Run So Slowly?

= Translation appears several places:
= Processing command line parameters

= Converting files/programs from one
language/format to another

CSE 401: Intro to Compiler
Construction

Goals

= Learn principles and practice of language translation
= Bring together theory and pragmatics of previous classes
= Understand compile-time vs run-time processing

= Study interactions among
= Language features
= Implementation efficiency
= Compiler complexity
= Architectural features

= Gain more experience with OO design

= Gain more experience with working in a team

= Gain experience working with SW someone else wrote

3 Final Exam
= Our final exam will be held 2:30-4:20 p.m.

Wednesday, Mar. 19, 2008 in our regular
classroom.

= The exam will be comprehensive, but will
have a focus on material covered since the
midterm.

= EC questions on material from Monday and
today.

= Ruth will hold office hours on Mon March 17
and Tues 18t Wed 19t times TBA.

= I will post exam materials on our course web
page. £

