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Runtime

The optimized program is ready to run 
… What sorts of facilities are available 

at runtime
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Runtime Systems

Compiled code + runtime system = executable 
The runtime system can include library functions for: 

– I/O, for console, files, networking, etc. 
– graphics libraries, other third-party libraries 
– reflection: examining the static code & dynamic state of the 

running program itself 
– threads, synchronization 
– memory management 
– system access, e.g. system calls 

Can have more development effort put into the runtime 
system  than into the compiler! 
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Memory management

Support 
– allocating a new (heap) memory block 
– deallocating a memory block when it’s done 

• deallocated blocks will be recycled 

Manual memory management: 
the programmer decides when memory blocks are done, and  

explicitly deallocates them 

Automatic memory management: 
the system automatically detects when memory blocks are 

done, and automatically deallocates them 
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Manual memory management
Typically use "free lists" 
Runtime system maintains a linked list of free blocks 

– to allocate a new block of memory, 
• scan the list to find a block that’s big enough 
• if no free blocks, allocate large chunk of new memory from OS 
• put any unused part of newly-allocated block back on free list 

– to deallocate a memory block, add to free list 
• store free-list links in the free blocks themselves 

Lots of interesting engineering details: 
• allocate blocks using first fit or best fit? 
• maintain multiple free lists, each for different size(s) of block? 
• combine adjacent free blocks into one larger block, to avoid 

fragmentation of memory into lots of little blocks? 
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Automatic memory management

A.k.a. garbage collection 
Automatically identify blocks that are "dead", deallocate

them 
• ensure no dangling pointers, no storage leaks 
• can have faster allocation, better memory locality  

General styles: 
• reference counting 
• tracing 
• mark/sweep 
• copying 

Options: 
• generational 
• incremental, parallel, distributed 

Accurate vs. conservative vs. hybrid
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Reference Counting

For each heap-allocated block, maintain count 
of # of pointers to block 

• when create block, ref count = 0 

• when create new ref to block, increment ref count 

• when remove ref to block, decrement ref count 
• if ref count goes to zero, then delete block 
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Evaluation of reference counting

+ local, incremental work 
+ little/no language support 

required 
+ local, implies feasible for 

distributed systems

- cannot reclaim cyclic structures
- uses malloc/free back-end => 

heap gets fragmented
- high run-time overhead (10-20%)

- space cost
- no bound on time to reclaim
- thread-safety?

But: a surprising resurgence in 
recent research papers fixes 
almost all of these problems
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Tracing Collectors

Start with a set of root pointers 
• global vars
• contents of stack and registers
Follow pointers in blocks, transitively starting from 

blocks pointed at by roots
– identifies all reachable blocks
– all unreachable blocks are garbage

• unreachable implies cannot be accessed by program

A question: how to identify pointers
– which globals, stack slots, registers hold pointers?
– which slots of heap-allocated memory hold pointers?
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Identifying pointers
“Accurate”: always know unambiguously where pointers 

are 
Use some subset of the following to do this: 

• static type info & compiler support 
• run-time tagging scheme 
• run-time conventions about where pointers can be 

• Conservative: 
assume anything that looks like a pointer might a pointer, 
& mark target block reachable 
+ supports GC in "uncooperative environments", e.g. C, C++ 

What “looks” like a pointer? 
• most optimistic: just align pointers to beginning of blocks 
• what about interior pointers? off-the-end pointers? unaligned 

pointers? 

• Miss encoded pointers (e.g. xor’d ptrs), ptrs in files, ... 12

Mark/sweep collection

• Stop the application when heap fills 
• Phase 1: trace reachable blocks, using e.g. depth-

first traversal 
– set mark bit in each block 

• Phase 2: sweep through all of memory 
– add unmarked blocks to free list 
– clear marks of marked blocks, to prepare for next GC 

• Restart the application 
– allocate new (unmarked) blocks using free list 
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Evaluation of mark/sweep

+ collects cyclic structures
+ simple to implement
+ no overhead during 

program execution

- “embarrassing pause”
problem
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Copying collection
Divide heap into two equal-sized semi-spaces

• application allocates in from-space
• to-space is empty

When from-space fills, do a GC:
– visit blocks referenced by roots
– when visit block from pointer:

• copy block to to-space redirect pointer to copy
• leave forwarding pointer in from-space version … if visiting 

block again, just redirect

– scan to-space linearly to visit reachable blocks
• may copy more blocks to end of to-space a la BFS

– when done scanning to-space
• reset from-space to be empty
• flip: swap roles of to-space and from-space

– restart application
16
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Evaluation of copying

+ collects cyclic structures
+ allocates directly from end of 

from-space
• no free list needed, 

implies very fast 
allocation

+ memory implicitly compacted 
on each allocation

implies better memory 
locality

implies no fragmentation 
problems

+ only visits reachable blocks, 
ignores unreachable blocks

- requires twice the (virtual) 
memory; physical memory 
sloshes back and forth

• could benefit from OS 
support

- “embarrassing pause” problem 
remains

- copying can be slower than 
marking

- redirects pointers, implies the 
need for accurate pointer info
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Generational GC

Hypothesis: most blocks die soon after 
allocation

• e.g. closures, cons cells, stack frames, …

Idea: concentrate GC effort on young blocks
• divide up heap into 2 or more generations 

• GC each generation with different frequencies, 
algorithms
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A generational collector

2 generations: new-space and old-space 
• new-space managed using copying 

• old-space managed using mark/sweep 

To keep pauses low, make new-space relatively small 
• will need frequent, but short, collections 

If a block survives many new-space collections, then 
promote it to old-space 

• no more load on new-space collections 

If old-space fills, do a full GC of both generations

20

Live

Dead

Generational Collector

Live(?)

1

R
O
O
T
S

N
U
R
S
E
R
Y

M
A
I
N

H
E
A
P

Dead

21

Roots for generational GC

Must include pointers from old-space to new-
space as roots when collecting new-space 

How to find these? 
1. Scan old-space at each scavenge 
2. Track pointers from old-space to new-space
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Evaluation of generation scavenging 

+ new-space collections 
are short, fraction of a 
second

+ vs. pure copying:
• less copying of long-

lived blocks

• less virtual memory 
space

+ vs. pure mark/sweep:
• faster allocation

• better memory locality

- still have infrequent full 
GCs w/embarrassing 
pauses 
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Other Approaches

• Incremental
– interleave GC with normal execution
– run GC in parallel on a multiprocessor

– Requires synchronization between application and 
collector


