
1

1

Runtime

The optimized program is ready to run
… What sorts of facilities are available

at runtime

2

Compiler
Passes

Analysis
of input program

(front-end)
character

stream

Lexical Analysis

Code Generation

Optimization

Intermediate
Code Generation

Semantic Analysis

Syntactic Analysis

annotated
AST

abstract
syntax tree

token
stream

target
language

intermediate
form

intermediate
form

Synthesis
of output program

(back-end)

3

Runtime Systems

Compiled code + runtime system = executable
The runtime system can include library functions for:

– I/O, for console, files, networking, etc.
– graphics libraries, other third-party libraries
– reflection: examining the static code & dynamic state of the

running program itself
– threads, synchronization
– memory management
– system access, e.g. system calls

Can have more development effort put into the runtime
system than into the compiler!

4

Memory management

Support
– allocating a new (heap) memory block
– deallocating a memory block when it’s done

• deallocated blocks will be recycled

Manual memory management:
the programmer decides when memory blocks are done, and

explicitly deallocates them

Automatic memory management:
the system automatically detects when memory blocks are

done, and automatically deallocates them

5

Manual memory management
Typically use "free lists"
Runtime system maintains a linked list of free blocks

– to allocate a new block of memory,
• scan the list to find a block that’s big enough
• if no free blocks, allocate large chunk of new memory from OS
• put any unused part of newly-allocated block back on free list

– to deallocate a memory block, add to free list
• store free-list links in the free blocks themselves

Lots of interesting engineering details:
• allocate blocks using first fit or best fit?
• maintain multiple free lists, each for different size(s) of block?
• combine adjacent free blocks into one larger block, to avoid

fragmentation of memory into lots of little blocks?

6

Automatic memory management

A.k.a. garbage collection
Automatically identify blocks that are "dead", deallocate

them
• ensure no dangling pointers, no storage leaks
• can have faster allocation, better memory locality

General styles:
• reference counting
• tracing
• mark/sweep
• copying

Options:
• generational
• incremental, parallel, distributed

Accurate vs. conservative vs. hybrid

2

7

Reference Counting

For each heap-allocated block, maintain count
of # of pointers to block

• when create block, ref count = 0

• when create new ref to block, increment ref count

• when remove ref to block, decrement ref count
• if ref count goes to zero, then delete block

8

Live

1

1

0

R
O
O
T
S

Reference Counting

R
O
O
T
S

R
O
O
T
S

A
N
T
I

0

0

Cyclic

0

Dead

1
1

1

1
2

1

9

Evaluation of reference counting

+ local, incremental work
+ little/no language support

required
+ local, implies feasible for

distributed systems

- cannot reclaim cyclic structures
- uses malloc/free back-end =>

heap gets fragmented
- high run-time overhead (10-20%)

- space cost
- no bound on time to reclaim
- thread-safety?

But: a surprising resurgence in
recent research papers fixes
almost all of these problems

10

Tracing Collectors

Start with a set of root pointers
• global vars
• contents of stack and registers
Follow pointers in blocks, transitively starting from

blocks pointed at by roots
– identifies all reachable blocks
– all unreachable blocks are garbage

• unreachable implies cannot be accessed by program

A question: how to identify pointers
– which globals, stack slots, registers hold pointers?
– which slots of heap-allocated memory hold pointers?

11

Identifying pointers
“Accurate”: always know unambiguously where pointers

are
Use some subset of the following to do this:

• static type info & compiler support
• run-time tagging scheme
• run-time conventions about where pointers can be

• Conservative:
assume anything that looks like a pointer might a pointer,
& mark target block reachable
+ supports GC in "uncooperative environments", e.g. C, C++

What “looks” like a pointer?
• most optimistic: just align pointers to beginning of blocks
• what about interior pointers? off-the-end pointers? unaligned

pointers?

• Miss encoded pointers (e.g. xor’d ptrs), ptrs in files, ... 12

Mark/sweep collection

• Stop the application when heap fills
• Phase 1: trace reachable blocks, using e.g. depth-

first traversal
– set mark bit in each block

• Phase 2: sweep through all of memory
– add unmarked blocks to free list
– clear marks of marked blocks, to prepare for next GC

• Restart the application
– allocate new (unmarked) blocks using free list

3

13

R
O
O
T
S

Live

Mark/sweep Collection

Dead

14

Evaluation of mark/sweep

+ collects cyclic structures
+ simple to implement
+ no overhead during

program execution

- “embarrassing pause”
problem

15

Copying collection
Divide heap into two equal-sized semi-spaces

• application allocates in from-space
• to-space is empty

When from-space fills, do a GC:
– visit blocks referenced by roots
– when visit block from pointer:

• copy block to to-space redirect pointer to copy
• leave forwarding pointer in from-space version … if visiting

block again, just redirect

– scan to-space linearly to visit reachable blocks
• may copy more blocks to end of to-space a la BFS

– when done scanning to-space
• reset from-space to be empty
• flip: swap roles of to-space and from-space

– restart application
16

R
O
O
T
S

Live

Copying Collection

Dead

17

Evaluation of copying

+ collects cyclic structures
+ allocates directly from end of

from-space
• no free list needed,

implies very fast
allocation

+ memory implicitly compacted
on each allocation

implies better memory
locality

implies no fragmentation
problems

+ only visits reachable blocks,
ignores unreachable blocks

- requires twice the (virtual)
memory; physical memory
sloshes back and forth

• could benefit from OS
support

- “embarrassing pause” problem
remains

- copying can be slower than
marking

- redirects pointers, implies the
need for accurate pointer info

18

Generational GC

Hypothesis: most blocks die soon after
allocation

• e.g. closures, cons cells, stack frames, …

Idea: concentrate GC effort on young blocks
• divide up heap into 2 or more generations

• GC each generation with different frequencies,
algorithms

4

19

A generational collector

2 generations: new-space and old-space
• new-space managed using copying

• old-space managed using mark/sweep

To keep pauses low, make new-space relatively small
• will need frequent, but short, collections

If a block survives many new-space collections, then
promote it to old-space

• no more load on new-space collections

If old-space fills, do a full GC of both generations

20

Live

Dead

Generational Collector

Live(?)

1

R
O
O
T
S

N
U
R
S
E
R
Y

M
A
I
N

H
E
A
P

Dead

21

Roots for generational GC

Must include pointers from old-space to new-
space as roots when collecting new-space

How to find these?
1. Scan old-space at each scavenge
2. Track pointers from old-space to new-space

22

Evaluation of generation scavenging

+ new-space collections
are short, fraction of a
second

+ vs. pure copying:
• less copying of long-

lived blocks

• less virtual memory
space

+ vs. pure mark/sweep:
• faster allocation

• better memory locality

- still have infrequent full
GCs w/embarrassing
pauses

23

Other Approaches

• Incremental
– interleave GC with normal execution
– run GC in parallel on a multiprocessor

– Requires synchronization between application and
collector

