
David Notkin

Autumn Quarter 2008

Software engineering issues

So far…

• …design

• …testing

• Today: very limited views of these two issues

– Each is deserving of (at least) a course on its own

– There are numerous other issues in software

engineering including requirements and

specification, analysis, maintenance, etc.

CSE401 Au08 2

Design

• What goes in the scanner vs. what goes in the

parser?

• How to decide?

CSE401 Au08 3

Possible answers include…

• Cohesion – why are elements placed together into

components?
– “component” is intentionally pretty vague here, and could include

packages, classes, modules, etc.

• Coupling – what are the interconnections and

dependences between components (and why)?

• Anticipating change – what are likely changes and

how will they be accommodated?

• Simplicity – see Hoare’s quotation, next slide

• Conceptual integrity – is there a consistent approach

to existing decisions?

• … others?

CSE401 Au08 4

Hoare sez

• “There are two ways of constructing a software

design: One way is to make it so simple that there

are obviously no deficiencies, and the other way is to

make it so complicated that there are no obvious

deficiencies. The first method is far more difficult.”

CSE401 Au08 5

Software structure degrades

• There is plenty of evidence that software structure

degrades over time

• That is, well-planned and well-designed software

systems become increasingly tangled over time

– Less simple, less clear cohesion, more muddled

coupling, harder to change, etc.

• One reason for this is that programmers often change

code in a way that is locally sensible but has poor

global and long-term consequences

• Reducing the rate of increase in entropy generally

demands more global knowledge of the software

CSE401 Au08 6

MiniJava

• As much as possible, respect the existing design –

that is, try to maintain its conceptual integrity

• At least two reasons

– Chambers, who wrote it originally, is a top-notch

designer and programmer

– You will end up with fewer unexpected interactions

and problems

CSE401 Au08 7

Software testing

• What are possible goals of software testing?

CSE401 Au08 8

Dijkstra

• “Testing can only be used to show the presence of

bugs, not their absence.”

CSE401 Au08 9

What are alternatives to these goals?

• Formal verification of the software

– Verification vs. validation: Building the system

right vs. building the right system [Boehm]

• Inspections, reviews, walkthroughs

• Certifying the process (e.g., ISO9000)

• Certifying the practitioners (e.g., licensing doctors)

• …

CSE401 Au08 10

A broad-brush of some testing issues

• White-box vs. black-box testing

– Can see the code, can’t see the code

• Functional vs. performance vs. stress vs. acceptance

vs. beta vs. … testing

• Structural coverage testing

CSE401 Au08 11

Some terminology

• A failure occurs when a program doesn’t satisfy its

specification

• A fault occurs when a program’s internal state is

inconsistent with what is expected (this is usually an

informal notion)

• A defect is the code that leads to a fault (and perhaps

a failure)

• An error is the mistake the programmer made in

creating the defect

12CSE401 Au08

13

A simple problem

• The program reads three integer values. The three

values are interpreted as representing the lengths of

the sides of a triangle. The program prints a

message that states whether the triangle is isosceles,

equilateral or scalene.

• Write a set of test cases that would adequately test

this program

CSE401 Au08

14

A study showed…

• 13 kinds of defects were found in actual programs

• Experienced programmers on average write test

cases that identify about half of the defects

CSE401 Au08

15

The lucky thirteen

• Valid scalene

• Valid equilateral

• Valid isosceles

• All permutations that
represent valid scalene

• One side is zero

• One side is negative

• All sides are zero

• Three positive integers
where two sum to the
third

• All permutations of the
previous case

• Three positive integers
where two sum to less
than the third

• All permutations of this

• A non-integer side

• An incorrect number of
inputs

CSE401 Au08

16

Bach adds…

• A GUI that accepts the three inputs

• Asks his students to “try long inputs”

• Interesting lengths
– 16 digits+: loss of mathematical precision

– 23+: can’t see all of the input

– 310+: input not understood as a number

– 1000+: exponentially increasing freeze when navigating to
the end of the field by pressing <END>

– 23,829+: all text in field turns white

– 2,400,000: reproducible crash

• The programmer was only aware of the first two
boundaries

CSE401 Au08

“What stops testers from trying longer inputs?”

• Bach suggests

– Seduced by what’s visible

– Think they need the specification to tell them the

maximum – and if they have one, stop there

– Satisfied by first boundary

– Use linear lengthening strategy

– Think “no one would do that”

– …

17

18

Partition testing

• Basic idea: divide program input space into

(quasi-)equivalence classes, selecting at least one

test case from each class

Structural coverage testing

• Premise: if significant parts of the program structure

are not tested, testing is surely inadequate

• Control flow coverage criteria

– Statement (node, basic block) coverage

– Branch (edge) and condition coverage

– Data flow (syntactic dependency) coverage

– Others…

• Attempted compromise between the impossible and

the inadequate

19

20

Statement coverage

• What’s a statement?
– max = (x > y) ? x : y;

– Using basic blocks

can help this issue

• Obviously

unsatisfying in trivial

cases (such as the

second example on

the right, from

Ghezzi)

if x > y then

max := x

else

max :=y

endif

if x < 0 then

x := -x

endif

z := x;

Edge coverage

• Uses control flow graph

– We’ll see these soon!

– Essentially a flowchart

• Covering all basic

blocks (nodes) would

not require edge ac to

be covered

• Edge coverage requires

all control flow graph

edges to be coverage

by at least one test

21

a

b

c

d

e

f

22

Condition coverage

• How to handle compound conditions?
– if (p != NULL) && (p->left < p->right) …

• Is this a single conditional in the CFG?

• How do you handle short-circuit conditionals?

– andthen, orelse …

• Condition coverage treats these as separate

conditions and requires tests that handle all

combinations

23

Path coverage

• Edge coverage is in some sense very static

• Edges can be covered without covering actual paths

(sequences of edges) that the program may execute

• Note that not all paths in a program are always

executable

– Writing tests for these is hard 

– Not shipping a program until these paths are executed does

not provide a competitive advantage 

• Loops (or recursion) makes life even harder

Summary

• Software testing – and only parts were covered at the

lightest imaginable level – is a complex art

• But you need to be able to wear two hats – that of the

developer, and that of the tester – and this is

extremely hard

• These ideas may give you some more disciplined

way to think about your testing process, informal

though it will be

CSE401 Au08 24

