
10/20/2008

1

The Backend

David Notkin

Autumn 2008

We have…

• …scanned and parsed and type checked and built an

abstract syntax tree with a symbol table…

• So we know we have

– a correct program, and

– we have a useful representation of that program

• Now what?

– Generate equivalent code in a lower-level

language … (so we can later run it)

– Perform further analysis .. (such as?)

– …what else?

CSE401 Au08 2

We can execute it immediately…

• To do so, we need to implement a MiniJava-AST

computer interpreter

CSE401 Au08 3

MiniJava

AST 401

computer

MiniJava AST

Program

Input to

MiniJava AST Program

Output of

MiniJava

AST Program

This is called

an interpreter

Fetch-Increment-Execute

Read-Eval-Print

Why interpret vs. generate code?

• Time until program can be executed

• Speed of executing program

• Simplicity of implementation

• Flexibility of implementation

TRADEOFFS

Interpreters

• Create data structures to represent run-time program

state

– values manipulated by program

– activation record (i.e., stack frame) for each called

method

– environment to store local variable bindings

– pointer to lexically-enclosing activation

record/environment (static link)

– pointer to calling activation record (dynamic link)

• EVAL loop executing AST nodes

An Interpreter for MiniJava:
~readme (Evaluator subdirectory)

• The main data structure is the environment, which

keeps track of the values of local variables declared

in a given scope, plus some information about

declarations in classes.

• Environments closely parallel SymbolTables

– "compile-time" information computable before

running the program (e.g. declarations and types)

– "run-time" information representing the program’s

running state

• Only one symbol table for each program scope, while

there can be zero or more environments created for

(most) scopes

10/20/2008

2

Continued… ~readme

• There are environments for different kinds of scopes

(global scope, class scope, and code scope…), as

they have different declarations and run-time state.

– An activation record is an instance of an

environment

• The (only) global environment maps names of

classes to the corresponding class environments…

• A class environment maps the names of locally

declared methods to their declarations and the

names of locally declared instance variables to their

resolved types. Also stores a reference to the

environment of its superclass (if any).

CSE401 Au08 7

Continued ~readme

• The values of the instance variables are not stored in

the class environment because each instance of the

class stores its own values of its instance variables.

• A code environment maps the names of local

variables to their current values.

• A method code environment additionally remembers

the environment of its caller, for use in printing stack

traces during evaluation.

• Each kind of nested environment stores a reference

to its lexically enclosing scope's environment.

CSE401 Au08 8

Continued ~readme

• The evaluation values are represented by instances
of Value classes, organized into a class hierarchy

• Each kind of ResolvedType (Int, Boolean,

Class, and Null) has a corresponding kind of

Value to use in representing values

• Int and BooleanValues store their value

• ClassValues store the environment for the

instantiated class as well as a table that maps

instance variable names to the current values for that

instance

• NullValue represents null pointers.

CSE401 Au08 9

Activation Records

• Each call of a procedure allocates an activation

record that stores

– mapping from names to Values, for each formal

and local variable in that scope (environment)

– lexically enclosing activation record (static link)

• An activation record for a method also stores the

calling activation record (dynamic link)

• A class activation record also stores

– methods (to support run-time method lookup)

– instance variable declarations, not values

– values stored in class instances (ClassValues)

Activation Records vs Symbol Tables

• For each method/nested block scope in a program:

– exactly one symbol table, storing types of names

– possibly many activation records, one per

invocation, each storing values of names

• For recursive procedures,

– can have several activation records for same

procedure on stack simultaneously

– All of these activation records have same “shape,”

described by single symbol table

Example

class Fac {

public int ComputeFac(int num) {

int numAux;

if (num < 1) {

numAux = 1;

} else {

numAux = num * this.ComputeFac(num-1);

}

return numAux;

}

}

10/20/2008

3

Interpretation tradeoffs: reprise

• simple conceptually, easy to implement

– fast turnaround time

– good programming environments

– easy to support fancy language features

• slow to execute

– data structure for value vs. direct value

– variable lookup vs. registers or direct access

– EVAL overhead vs. direct machine instructions

– no optimizations across AST nodes

Compile-time Processing

• Decide representation of run-time data values

• Decide where data will be stored

– registers

– format of stack frames

– global memory

– format of in-memory data structures (e.g. records,

arrays)

• Generate machine code to do basic operations

– just like interpreting expression, except generate

code that will evaluate it later

• Do optimizations across instructions if desired

Compile-time vs Run-time

Compile-time Run-time

Procedure Activation record/stack

frame

Scope, symbol table Environment (contents

of stack frame)

Variable Memory location or

register

Lexically-enclosing

scope

Static link

Calling Procedure Dynamic link

