
9/26/2008

1

Lexical

David Notkin

Autumn Quarter 2008

Analysis

Survey (partial results)

Excited [selected responses]

• My dad says it's the epitome of Computer

Science.

• I want to understand how a compiler works.

See behind the scenes and learn something

about software engineering.

• I really liked 341, and this seems like a way

to understand more of what goes on behind

programming languages.

• I am excited about the project and actually

implementing some of the theoretical

knowledge.

• Haven't heard much, but I'm thinking it will

have to do a lot with the stuff we learned in

322 such as grammars and regular

expressions.

• Sadly, I haven't heard much, but I enjoyed

the first lecture.

Concerned [selected responses]

• Very difficult projects

• High work load and difficult project

• Some think it's a bunch of pointless theory.

• I am worried about getting too buried in

theory that isn't shown in an applicable way.

Quite a bit of work and complicated.

• The projects are a lot of work, especially

when you are taking 3 other courses (2 of

which are CSE

• I've heard the projects can be time-

consuming

• I've heard that most of the work is figuring

what the preexisting project code does than

applying the theory we learn. While that is a

useful skill, I hope to get more out of the

projects.

CSE401 Au08 2

Survey (partial results): interests…

• I was interested in how compilers are able to take the Fibonacci function

recursively written and optimize it into a for loop without the user knowing it. I

see now optimizations aren't part of the class, but I would like to learn maybe

about just what optimizations are used in compilers today.

• No specific ones yet. I suppose I'm a little curious about how ML (and similar

statically typed languages) do type inference.

• I am especially interested in JIT compiling.

• Effectively parsing text is something I've been curious about, so i'm looking

forward to that. Also getting to the computer to recognize the meaning of text

looks interesting.

• What is being done in the field of compilers that try to make code more secure?

• I'm interested in seeing how theory connects to practice.

• I'm not sure if this relates to this course, but I'm interested in learning how

scripting languages are compiled since we don't go through a build process with

them as we do with Java or C, if it's a different process.

CSE401 Au08 3

Question

•IF I were to offer the following option, might you be

interested in it?

– A reduced project (that is, not all of the extensions to

MiniJava but still enough to learn about key issues in

compiling) and

– more substantial “homework”

• If you are interested in this option, send email either directly to

me or, if you prefer, to the mailing list before lecture on Monday

• I will decide if this is feasible by Wednesday‟s lecture

– It‟s not a vote, it‟s my decision: articulate arguments, in

addition to degree of interest, will help inform my decision

CSE401 Au08 4

9/26/2008

2

Scanning a.k.a. lexing: purpose

• Turn the character stream that represents the source

program into a token stream

– In general, it should be an efficient phase of

compilation

• A token is a group of characters forming an atomic

unit of syntax, such as a identifier, number, etc.

• White space comprises

– characters between tokens that are ignored

– they contribute to the human communication

aspects of the program, but do not change the

semantics of its execution

CSE401 Au08 5

Separating lexing from parsing

• Lexing can be represented and implemented as part

of syntactic analysis

– Regular expressions are a proper subset of

context free grammars

• But this is rarely if ever done: separating concerns

tends to be a better design

• Simplifies scanner and parser

– Scanner handles I/O and machine dependencies,

needn‟t know language syntax

– Recognizing regular expressions is much faster

than parsing context free grammars

– Parser can focus on syntactic structure
CSE401 Au08 6

Lexical design

• Most languages

are free form

– Layout doesn‟t

matter (to the

computer – see

obfuscated code

example on right)

– White space

separates tokens

• But some

languages are

more constrained

lexically

#include <stdio.h>

main(t,_,a)char *a;{return!0<t?t<3?main(-79,-

13,a+main(-87,1-_,

main(-86,0,a+1)+a)):1,t<_?main(t+1,_,a):3,main(-

94,-27+t,a)&&t==2?_<13?

main(2,_+1,"%s %d %d\n"):9:16:t<0?t<-

72?main(_,t,

"@n'+,#'/*{}w+/w#cdnr/+,{}r/*de}+,/*{*+,/w{%+,/w

#q#n+,/#{l,+,/n{n+,/+#n+,/#\

;#q#n+,/+k#;*+,/'r :'d*'3,}{w+K w'K:'+}e#';dq#'l

\

q#'+d'K#!/+k#;q#'r}eKK#}w'r}eKK{nl]'/#;#q#n'){)#

}w'){){nl]'/+#n';d}rw' i;# \

){nl]!/n{n#'; r{#w'r nc{nl]'/#{l,+'K {rw'

iK{;[{nl]'/w#q#n'wk nw' \

iwk{KK{nl]!/w{%'l##w#' i;

:{nl]'/*{q#'ld;r'}{nlwb!/*de}'c \

;;{nl'-

{}rw]'/+,}##'*}#nc,',#nw]'/+kd'+e}+;#'rdq#w!

nr'/ ') }+}{rl#'{n' ')# \

}'+}##(!!/")

:t<-50?_==*a?putchar(31[a]):main(-

65,_,a+1):main((*a=='/')+t,_,a+1)

:0<t?main(2,2,"%s"):*a=='/'||main(0,main(-

61,*a,

"!ek;dc i@bK'(q)-[w]*%n+r3#l,{}:\nuwloca-O;m

.vpbks,fxntdCeghiry"),a+1);}

CSE401 Au08 7

Ex: Fortran

• Data cards

• Comment cards: first character is „C‟

• Statement cards

– First five characters are an optional statement

number

– Sixth character is a continuation character – any

character other than „0‟ indicates that this

continues the statement from the previous card

– Characters 7 through 72 are source code

– Characters 73 through 80 are optional and have

no meaning with respect to the program per se

CSE401 Au08 8

9/26/2008

3

Ex: Haskell

• “[I]ndentation … is important. Haskell uses a system

called „layout‟ to structure its code (… Python uses a

similar system). The layout system allows you to

write code without the explicit semicolons and braces

that other languages like C and Java require.”

-- Hal Daumé III

• Tabs and spaces can cause confusion

main = let dolly = breedSheep

in do args <- getArgs

print $ traceFamily dolly (map getFunctionByName args)

CSE401 Au08 9

Definitions

• Pattern: a definition of a related set of lexical entities

– Ex: all sequences of numeric characters, all

sequences of alphanumeric characters starting

with an alphabetic character

– Regular expressions are used in practice to define

patterns

• Lexeme: group of characters that matches a pattern

– Ex: „1234‟, „43204222‟, „snork‟, „f0rk‟

• Token: class of lexemes matching a pattern,

distinguished by an attribute

– Ex: „snork‟ and „f0rk‟ are both identifier lexemes

with the actual names kept as an attribute
CSE401 Au08 10

Languages: quick reminder

• Alphabet: finite set of characters and symbols

• String: a finite (possibly empty) sequence of

characters from an alphabet

• Language: a (possibly empty or infinite) set of strings

• Grammar: a finite specification for a set of strings

• Language automaton: an abstract machine that

accepts all strings in a given language and only those

• A language can be specified by many different

grammars and automata

• A grammar or automaton specifies a single language

CSE401 Au08 11

Language (Chomsky) hierarchy:

quick reminder

• Regular (Type-3) languages are

specified by regular

expressions/grammars and

finite automata (FSAs)

• Context-free (Type-2)

languages are specified by

context-free grammars and

pushdown automata (PDAs)

• Context-sensitive (Type-1)

languages … aren‟t too

important

• Recursively-enumerable (Type-

0) languages are specified by

general grammars and Turing

machines

Turing

CSL

CFL

Regular

One distinction among the levels is what

is allowed on the right hand and on the

left hand sides of grammar rules
CSE401 Au08 12

9/26/2008

4

Regular Expressions:

defined inductively

• Base cases

– Empty string ()

– Symbol from the

alphabet

• Inductive cases

– Concatenation: E1E2

– Alternation E1 | E2

– Kleene closure: E*

• Parentheses for

grouping

• Precedence: * is

highest, then

concatenate, | is lowest

• White space not

significant

CSE401 Au08 13

Notational Conveniences:

no additional expressive power

• E+ 1 or more occurrences of E

• Ek exactly k occurrences of E

• [E] 0 or 1 occurrences of E

• {E} E*

• not(x) any character in

alphabet except x

• not(E) any strings from

alphabet except those in E

• E1-E2 any string matching E1

that‟s not in E2

• May name regular expressions

• Ex:
– letter ::= a | b | ... | z

– digit ::= 0 | 1 | ... | 9

– alphanum ::= letter | num

• Recursive definitions prohibited

• Produce simple regular

expression from named regular

expressions by “macro

expansion”

CSE401 Au08 14

Examples

• Identifiers

– ident ::= letter (digit | letter)*

• Integer constants

– integer ::= digit+

– sign ::= + | -

– signed_int ::= [sign] integer

• Real numbers

– real ::= signed_int

[fraction] [exponent]

– fraction ::= . digit+

– exponent ::= (E | e) signed_int

CSE401 Au08 15

More Examples

• String and character constants

– string ::= " char* "

– character ::= ' char '

– char ::= not(" | ' | \) | escape

– escape ::=

\(" | ' | \ | n | r | t | v | b | a)

• White space

– whitespace ::=

<space> | <tab> | <newline> |

comment

– comment ::= /* not(*/) */

CSE401 Au08 16

9/26/2008

5

Meta-Rules

• Consider a program defined as:

– program ::= (token | whitespace)*

– token ::= ident | integer | real | …

• Then consider how to tokenize „hi2bob‟

– <ident: „hi2bob‟> ?

– <ident: „hi‟, integer: „2‟, ident: „bob‟>

– Or six separate tokens?

• All are legal according to the grammar, but the choice

does matter – the ambiguity isn‟t desirable here

• Usually apply an extra rule such as “longest

sequence wins”

CSE401 Au08 17

Initial MiniJava lexical specification

Program ::= (Token | Whitespace)*

Token ::= ID | Integer | ReservedWord | Operator |

Delimiter

ID ::= Letter (Letter | Digit)*

Letter ::= a | ... | z | A | ... | Z

Digit ::= 0 | ... | 9

Integer ::= Digit+

ReservedWord::= class | public | static | extends |

void | int | boolean | if | else |

while|return|true|false| this | new | String

| main | System.out.println

Operator ::= + | - | * | / | < | <= | >= | > | == |

!= | && | !

Delimiter ::= ; | . | , | = | (|) | { | } | [|]

CSE401 Au08 18

Building Scanners with REs

• Convert regular expressions into finite state automata

(FSA)

• Convert FSA into a scanner implementation

– By hand into a collection of procedures

– Mechanically using a table-driven scanner

CSE401 Au08 19

Finite State Automata

• On whiteboard; see book

CSE401 Au08 20

9/26/2008

6

(Non)Determinism

• FSA can be deterministic (DFA) or nondeterministic

(NFA)

• Deterministic: always know which edge to take

– At most one arc leaving a state with a given

symbol

– No arcs

• Nondeterministic: may need to guess or explore

multiple paths, choosing the right one later

• Regular expressions map naturally to NFAs

• Hard to produce scanner code from NFAs but easy to

produce from DFAs

CSE401 Au08 21

A Solution

• Cool algorithm to translate any NFA to a DFA

– Proves that NFAs aren‟t any more expressive

• But… what might happen?

– Can be done by hand or automatically

1. Convert RE to NFA

2. Convert NFA to DFA

3. Convert DFA to code

– [can then minimize DFA]

Trivia: Who invented this cool algorithm?
CSE401 Au08 22

RE => NFA: construct inductively

• On whiteboard; see book

CSE401 Au08 23

NFA => DFA

• Problem: NFA can “choose” among alternative paths,

while DFA must pick only one path

• Solution: subset construction

– Each state in the DFA represents the set of states

the NFA could possibly be in

CSE401 Au08 24

9/26/2008

7

Subset Construction

• On whiteboard; see book

CSE401 Au08 25

Tokens

• Every “final” symbol of a DFA emits a token

• Tokens are the internal compiler names for the

lexemes

== becomes equal

(becomes leftParen

private becomes private

• Also, there may be additional data representing the

attribute

CSE401 Au08 26

DFA => Code

• Option 1: Implement by hand using procedures

– one procedure for each token

– each procedure reads one character

– choices implemented using if and switch

statements

• Pros: straightforward to write, fast

• Cons

– a fair amount of tedious work

– may have subtle differences from the language

specification

CSE401 Au08 27

DFA => code

• Option 2: use tool to generate table driven parser

– Rows: states of DFA

– Columns: input characters

– Entries: Go to next state, Accept token, Error

• Pros

– Convenient

– Exactly matches specification, if tool generated

• Cons

– “Magic”

– Table lookups may be slower than direct code

CSE401 Au08 28

9/26/2008

8

Automatic Scanner Generation

• We use the jflex tool to automatically create a

scanner from a specification file,

Scanner/minijava.jflex

– We use the CUP tool to automatically create a parser from a

specification file, Parser/minijava.cup, which also generates

all of the code for the token classes used in the scanner, via

the Symbol class

• The MiniJava Makefile automatically rebuilds the

scanner (or parser) whenever its specification file

changes

CSE401 Au08 29

Symbol Class

• Lexemes are represented as instances of class
Symbol

class Symbol {

Int sym; // which token class?

Object value; // attribute info for this lexeme

...

}

• A constant is defined for each token class in the sym
helper class

class sym {

static int CLASS = 1;

static int IDENTIFIER = 2;

static int COMMA = 3;

...

}

• Can use this in printing code for Symbols; see
symbolToString in minijava.jflex

CSE401 Au08 30

Token Declarations

• Declare new token classes in Parser/minijava.cup,
using terminal declarations
– If Symbol stores attribute data, then its type must be defined

• Examples
/* reserved words: */

terminal CLASS, PUBLIC, STATIC, EXTENDS; …

/* operators: */

terminal PLUS, MINUS, STAR, SLASH, EXCLAIM; …

/* delimiters: */

terminal OPEN_PAREN, CLOSE_PAREN; …

terminal EQUALS, SEMICOLON, COMMA, PERIOD; …

/* tokens with values: */

terminal String IDENTIFIER;

terminal Integer INT_LITERAL; …

CSE401 Au08 31

jflex Token Specifications

• Helper definitions for character classes and regular

expressions (e.g., letter = [a-z A-Z], eol = [\r\n])

• Token patterns are defined as regexp { Java stmt }

• regexp may include

– a string literal in double-quotes, e.g. "class", "<="

– a reference to a named helper, in braces, e.g., {letter}

– a character list or range, in square brackets ,e.g., [a-z A-Z]

– a negated character list or range, e.g., [^\r\n]

– . (which matches any single character)

– concatenation, alternation, Kleene * and +, optional,

grouping

CSE401 Au08 32

9/26/2008

9

jflex Token: accept action

• for a simple token
return symbol(sym.CLASS);

• for a token with attribute data
return symbol(sym.CLASS,yytext()); stringyytext()

• empty for whitespace

CSE401 Au08 33

Some lies I told

• Sometimes the parser calls the scanner and requests

a token, rather than creating a token stream and

passing it to the parser

• Sometimes there is some language information

useful in the scanner; for example, the parser may

wish the scanner to distinguish between names that

are types and names that are variables (in C++ and

Java, for example)

– But the scanner doesn‟t know how things are

declared; so this can complicate the dependences

CSE401 Au08 34

