
12/5/2008

1

Vignettes II

David Notkin

Autumn 2008

Attribute grammars

• Context-free grammars are powerful notations for 

compiling

• At the same time they are, indeed, context-free

– For example, they can recognize strings such as 

xnyn but not xnynzn

– In general, CFGs are limited in the kind of 

underlying computations they can represent

• Attribute grammars (Knuth 1968) are a formal 

approach to overcome such limitations by 

augmenting a CFG with attributes and equations to 

compute those attributes

CSE401 Au08 2

Example (Aiken, Berkeley)

• E  ::= E'+ E | E‘

E' ::= int * E' | int

• What if not only want to represent the expressions as 

a syntax tree, but we also want to compute their 

result?

• Augment terminals and non-terminals with attributes

• Augment productions with equations

CSE401 Au08 3

The attribute grammar

• E  ::= E‘ + E1       E.val = E'.val + E1.val

E  ::= E‘            E.val = E'.val

E' ::= int * E1'     E'.val = int.val * E1'.val

E’ ::= int           E'.val = int.val 

• All attributes are integer (in this example), referred to 
by a.val where a is a symbol in the grammar

• For terminal symbols, the attribute’s value is defined 

to be the lexeme (as returned by the scanner)

• For non-terminal symbols, the attribute’s value is 

defined by the associated equation

• In this case, the final value of E.val is supposed to 

be the value of the parsed expression

CSE401 Au08 4

5 * 3 + 2 * 4

CSE401 Au08 5

E1           E1.val   = E3'.val + E2.val

------------------ E3'.val  = int7.val + E4'.val

E3'      +      E2 E4'.val  = int8.val

--------- ---- E2.val   = E5'.val

int7 * E4'         E5' E5'.val  = int9.val * E6'.val

--- ---------- E6'.val  = int0.val

int8    int9 *  E6‘ int7.val = 5

---- int8.val = 3

int0 int9.val = 2

int0.val = 4

Miscellaneous

• The attribute of some symbols is unused

• Fresh attributes are associated with every node in the 

parse tree – that instances of grammar symbols have 

their own attribute value

• The semantic actions specify a system of equations; 

they don't say in what order the equations are 

resolved. 

– Side-effects in equations may require an 

understanding of the order in which attributes get 

computed

• In the example, the val attribute can be evaluated 

bottom-up: this is not always true

CSE401 Au08 6



12/5/2008

2

Two kinds of attributes

• Synthesized: attribute value depends on descendants 

of the node

– Example: the val attribute above

• Inherited: attribute value depends on parent and 

siblings of the node

– Example: symbol table environment – why might 

we want this?

CSE401 Au08 7

Reprise

• Attribute grammars can allow the parsing of richer 

languages (e.g., xnynzn can be parsed by adding 

equations that count how many of each terminal are 

in a sequence and making sure that they match)

– These are usually more constrained languages –

for example, ensuring that a syntactically legal 

program also satisfies the typing restrictions

• They can also associate meaning to grammars

– When a parser tree is passed to semantic 

analysis, a lot of information is taken for granted

– Example: 3*4 = 12

CSE401 Au08 8

Compiling for multicore

• Multi-core is here

• Why does this place fear in the heart of compiler 

writers?

• Who else does it scare?

• Why?

CSE401 Au08 9

Issues

• Concurrency is hard(er)

• Compile concurrency or infer concurrency or both?

• Homogeneous vs. heterogeneous

– Processors, access times, etc.

• What layer should provide/exploit the concurrency?

– Architecture, language, middle-ware, application, 

etc.?

CSE401 Au08 10


