Semantic Analysis

Having figured out the program’s
structure, now figure out what it means

Analysis Synthesis
of input program of output program
(front-end) (back-end)

Intermediate

Compiler Passes
stream

| Lexical Analysis | Code Generation
intermediate
stream

| Syntactic Analysis | | Optimization |
Ssyntax tree form
‘ | Semantic Analysis | | Code Generation |
AST language

Semantic Analysis/Checking

Semantic analysis: the final part of the analysis
half of compilation
— afterwards comes the synthesis half of compilation

PUI‘pOSGSZ
 perform final checking of legality of input program,
“missed” by lexical and syntactic checking
* name resolution, type checking, break stmtin loop, ...
 “understand” program well enough to do synthesis

» Typical goal: relate assignments to & references of
particular variable

Symbol Tables

Key data structure during semantic analysis,
code generation

Build in semantic pass

Stores info about the names used in program
a map (table) from names to info about them
each symbol table entry is a binding

a declaration adds a binding to the map

a use of a name looks up binding in the map
report a type error if none found

An Example

class C {
int x;
boolean y;
int f(C c) {
int z;

:::z...c...new CQ...x..f(..)...

}
}
A Bigger Example
class C {
int x;
boolean vy;
int f(C c){
int z;
{
boolean x;
Cz
int f;
.Z...C...new C()...x...f(...)...
}
.Z...C...new C()...x...f(...)...
}

}

Nested Scopes

Can have same name declared in different scopes

» Want references to use closest textually-enclosing
declaration
« static/lexical scoping, block structure
« closer declaration shadows declaration of enclosing scope
Simple solution:
— one symbol table per scope

— each scope’s symbol table refers to its lexically enclosing
scope’s symbol table

— root is the global scope’s symbol table
— look up declaration of name starting with nearest symbol
table, proceed to enclosing symbol tables if not found locally

All scopes in program form a tree

Name Spaces

Sometimes we can have same name refer to different
things, but still unambiguously. Example:
class F {
int F(FF){
/I 3 different F's are available here!
... new F() ...
W F=..
.. this.F(..) ...
}
}
In MiniJava: three name spaces
¢ classes, methods, and variables

* We always know which we mean for each name
reference, based on its syntactic position

Simple solution: symbol table stores a separate map for
each name space

Information About Names

» Different kinds of declarations store different
information about their names

— must store enough information to be able to check
later references to the name

» A variable declaration:
* its type
» whether it’s final, etc.
» whether it's public, etc.

* (maybe) whether it's a local variable, an instance
variable, a global variable, or ...

Information About Names (Continued)

* A method declaration:
* its argument and result types
» whether it's static, etc.
» whether it's public, etc.

* A class declaration:
* its class variable declarations
* its method and constructor declarations
* its superclass

Generic Type Checking Algorithm

» To do semantic analysis & checking on a program,
recursively type check each of the nodes in the
program’s AST,each in the context of the symbol table
for its enclosing scope

¢ going down, create any nested symbol tables & context needed

« recursively type check child subtrees

* on the way back up, check that the children are legal in the context
of their parents

» Each AST node class defines its own type check
method, which fills in the specifics of this recursive
algorithm

* Generally:

e declaration AST nodes add bindings to the current symbol table
e statement AST nodes check their subtrees
« expression AST nodes check their subtrees and return a result type

MiniJava Type Check Implementation

In the SymbolTable subdirectory:

Various SymbolTable classes, organized into a hierarchy:
SymbolTable
GlobalSymbolTable
NestedSymbolTable
ClassSymbolTable
CodeSymbolTable

» Support the following operations (and more):
* declareClass, lookupClass
* declarelnstanceVariable,
declareLocalVariable,
lookupVariable
* declareMethod, lookupMethod

Class, Variable and Method Information

lookupClass returns a ClassSymbolTable
— includes all the information about the class’s interface

lookupVariable returns a Varlnterface
— stores the variable’s type
A hierarchy of implementations:
Varlnterface
LocalVarinterface
InstanceVarinterface

lookupMethod returns a MethodInterface
— stores the method’s argument and result types

Key AST Type Check Operations

void Program.typecheck()
throws TypecheckCompilerExn;
— typecheck the whole program

void Stmt.typecheck(CodeSymbolTable)
throws TypecheckCompilerExn;
— Type check a statement in the context of the given symbol table

ResolvedType Expr.typecheck(CodeSymbolTable)
throws TypecheckCompilerExn;

— type check an expression in the context of the given symbol
table, returning the type of the result

Forward References

Typechecking class declarations is tricky: need to allow for
forward references from the bodies of earlier classes to
the declarations of later classes

class First {
Second next; // must allow this forward ref

int () {

... next.g() ... // and this forward ref

}
}
class Second {
First prev;
int g() {
... prev.f() ...
}
}

Supporting Forward References

Simple solution:
type check a program’s class declarations in multiple
passes

« first pass: remember all class declarations
{First --> class{?}, Second -->class{?}}

» second pass: compute interface to each class, checking
class types in headers
{First --> class{next:Second },
Second -->class{prev:First }}

« third pass: check method bodies, given interfaces

Supporting Forward References [continued]

void
ClassDecl.declareClass(GlobalSymbolTable)

throws TypecheckCompilerExn;

» declare the class in the global symbol table

void ClassDecl.computeClassinterface()
throws TypecheckCompilerExn;

« fill out the class’s interface, given the declared classes

void ClassDecl.typecheckClass()
throws TypecheckCompilerExn;

* type check the body of the class, given all classes’
interfaces

Example Type Checking Operation

class VarDeclStmt {
String name;
Type type;

void typecheck(CodeSymbolTable st)

throws TypecheckCompilerExn {
st.declareLocalVar(type.resolve(st), name);

}
}

* resolve checks that a syntactic type expression is a
legal type, and returns the corresponding resolved
type

* declareLocalvar checks for duplicate variable
declaration in this scope

Example Type Checking Operation

class AssignStmt {

String |hs;

Expr rhs;

void typecheck(CodeSymbolTable st)

throws TypecheckCompilerException {

Varinterface |hs_iface = st.lookupVar(lhs);
ResolvedType Ihs_type = Ihs_iface.getType();
ResolvedType rhs_type = rhs.typecheck(st);
rhs_type.checklsAssignableTo(lhs_type);

}
}
lookupVar checks that the name is declared as a var
checklsAssignableTo verifies that an expression yielding the

rhs type can be assigned to a variable declared to be of Ihs type
« initially, rhs type is equal to or a subclass of Ihs type

Example Type Checking Operation

class IfStmt {

Expr test;

Stmt then_stmt;

Stmt else_stmt;

void typecheck(CodeSymbolTable st)

throws TypecheckCompilerException {

ResolvedType test type = test.typecheck(st);
test_type.checklsBoolean();
then_stmt.typecheck(st);
else_stmt.typecheck(st);

}
» checkilsBoolean checks that the type is a boolean

10

Example Type Checking Operation

class BlockStmt {
List<Stmt> stmts;
void typecheck(CodeSymbolTable st)
throws TypecheckCompilerException {
CodeSymbolTable nested st =
new CodeSymbolTable(st);
foreach Stmt stmt in stmts {
stmt.typecheck(nested_st); }

* (Garbage collection will reclaim nested_st
done)

when

Example Type Checking Operation

class IntLiteralExpr extends Expr {
int value;

ResolvedType typecheck(CodeSymbolTable st)
throws TypecheckCompilerException {
return ResolvedType.intType();

ResolvedType.intType() returns the resolved int type

11

Example Type Checking Operation

class VarExpr extends Expr {
String name;

ResolvedType typecheck(CodeSymbolTable st)
throws TypecheckCompilerException {
Varinterface iface = st.lookupVar(name);
return iface.getType();

Example Type Checking Operation

class AddExpr extends Expr {
Expr argl;
Expr arg2;

ResolvedType typecheck(CodeSymbolTable st)
throws TypecheckCompilerException {

ResolvedType argl type =
argl.typecheck(st);

ResolvedType arg2_type =
arg2.typecheck(st);

argl_type.checklsint();

arg2_type.checklsint();

return ResolvedType.intType();

12

Polymorphism and Overloading

Some operations are defined on multiple types

Example: assignment statement: Ihs = rhs;
« works over any lhs & rhs types, as long as they’re compatible
« works the same way for all such types

Assignment is a polymorphic operation

Another example: equals expression: exprl == expr2
» works if both exprs are ints or both are booleans (but nothing
else, in MiniJava)
e compares integer values if both are ints, compares boolean
values if both are booleans
« works differently for different argument types

Equality testing is an overloaded operation

Polymorphism and Overloading [continued]

e Full Java allows methods & constructors to be

overloaded, too

 different methods can have same name but different
argument types

» Java 1.5 supports (parametric) polymorphism
via generics: parameterized classes and
methods

13

An Example Overloaded Type Check

class EqualExpr extends Expr {
Expr argl,
Expr arg2;
ResolvedType typecheck(CodeSymbolTable st)
throws TypecheckCompilerException {
ResolvedType argl_type = argl.typecheck(st);
ResolvedType arg2_type = arg2.typecheck(st);
if (arg1_type.isintType() &&
arg2_type.isintType()) {
/I resolved overloading to int version
return ResolvedType.booleanType();
} else if (argl_type.isBooleanType() &&
arg2_type.isBooleanType()) {
/I resolved overloading to boolean version
return ResolvedType.booleanType();
}else {

throw new TypecheckCompilerException("bad
overload");

1

Type Checking Extensions in Project [1]

Add resolved type for double

Add resolved type for arrays
— parameterized by element type

Questions:
— when are two array types equal?
— when is one a subtype of another?
— when is one assignable to another?
Add symbol table support for static class variable
declarations
— StaticVarinterface class
— declareStaticVariable method

14

Type Checking Extensions in Project [2]

Implement type checking for new statements and
expressions:

[fStmt
e else stmt is optional

ForStmt
* loop index variable must be declared to be an int
« initializer & increment expressions must be ints
¢ test expression must be a boolean

BreakStmt
e must be nested in a loop

DoubleLiteralExpr
 resultis double

OrExpr
* like AndExpr

Type Checking Extensions in Project [3]
ArrayAssignStmt

e array expr must be an array

e index expr must be an int

¢ rhs expr must be assignable to array’s element type
ArrayLookupExpr

e array expr must be an array

e index expr must be an int

e resultis array’s element type
ArrayLengthExpr

e array expr must be an array

e resultis anint
ArrayNewEXxpr

* length expr must be an int

« element type must be a legal type

e resultis array of given element type

15

Type Checking Extensions in Project [4]

Extend existing operations on ints to also work on doubles

Allow unary operations taking ints (NegateExpr) to be overloaded
on doubles

Allow binary operations taking ints (AddExpr, SubExpr,
MulExpr, DivExpr, LessThanExpr,LessEqualExpr,
GreaterEqualExpr, GreaterThanExpr,EqualExpr,
NotEqualExpr) to be overloaded on doubles
— also allow mixed arithmetic: if operator invoked on an int and a
double, then implicitly coerce the int to a double and then use the
double version

Extend isAssignableTo to allow ints to be assigned/passed/
returned to doubles, via an implicit coercion

Type Checking Terminology

Static vs. dynamic typing
« static: checking done prior to execution (e.g. compile-time)
« dynamic: checking during execution

Strong vs. weak typing
« strong: guarantees no illegal operations performed
« weak: can’t make guarantees

Caveats:

« Hybrids common static dynamic

¢ Mistaken usage

also common strong
e “untyped,” “typeless”

could mean dynamic weak

or weak

16

Type Checking Terminology

Static vs. dynamic typing
« static: checking done prior to execution (e.g. compile-time)
» dynamic: checking during execution

Strong vs. weak typing
« strong: guarantees no illegal operations performed
« weak: can’t make guarantees

Caveats:

« Hybrids common static dynamic
* Mistaken usage -
also common strong |Java Lisp
. “Untyped," “typeleSS"
could mean dynamic weak C PERL (1'5)

or weak

Type Equivalence

When is one type equal to another?

implemented in MiniJava with
ResolvedType.equals(ResolvedType) method

“Obvious” for atomic types like int , boolean , class
types

What about type "constructors” like arrays?
int[] a1,
int[] a2;
int[][] a3;
boolean[] a4;
Rectangle[] a5;
Rectangle[] a6;

17

Type Equivalence

Parameterized types in Java 1.5:
List<int>I1; List<int>12; List<List<int>>I3;

In C:
int* p1; int* p2;
struct {int x;} s1; struct {int x;} s2;
typedef struct {int x;} S; S s3; S s4;

Name vs Structural Equivalence

Name equivalence:
two types are equal iff they came from the same textual occurrence
of a type constructor
« implement with pointer equality of ResolvedType instances
¢ special case: type synonyms (e.g. typedef) don’t define new types
¢ e.g. class types, struct types in C, datatypes in ML
Structural equivalence:
two types are equal iff they have same structure
— if atomic types, then obvious
— if type constructors:
* same constructor
e recursively, equivalent arguments to constructor

— implement with recursive implementation of equals, or by
canonicalization of types when types created then use pointer
equality

— e.g. atomic types, array types, record types in ML

18

Type Conversions and Coercions

In Java, can explicitly convert an object of
type double to one of type int
— can represent as unary operator
— typecheck, codegen normally

In Java, can implicitly coerce an object of type
int to one of type double

— compiler must insert unary conversion operators,
based on result of type checking

Type Casts

In C and Java, can explicitly cast an object of one type
to another

e sometimes cast means a conversion (casts between numeric
types)

e sometimes cast means just a change of static type without
doing any computation (casts between pointer types or pointer
and numeric types)

In C: safety/correctness of casts not checked

 allows writing low-level code that’s type-unsafe

* more often used to work around limitations in C’s static type
system

In Java: downcasts from superclass to subclass include
run-time type check to preserve type safety

« static typechecker allows the cast

¢ codegen introduces run-time check

« Java’'s main form of dynamic type checking

19

Programming langusge | static / dynsmic | strang / weak | sstety | Nominative structural |
Ada static strang safe | nominative
assembly language none maak unsafe | stuctural
BASIC static e ak safe nominative
c statio wiz ke unsate | nominative
[static strang unsate | nominative
cal satic strong safe | nominative
Clipper dynamic wizak safe | duck

[static strang unsafe | nominative
Fortran static strong safe | nominative
Haskell statio strang safe | structural
1o dynamic strang safe | duck
Java static strang safe | nominative
Lisp dynamic strong safe |stuctural
WL statio strong safe |stuctural
Objective-C ! dynamic weak safe | duck
Pascal statio strong safe | nominative
Ped 15 dynamioc wiz e safe | nominative
Perdl & hybrid strang safe | duck

PHP dynamic strang safe |7

Fike static maak safe | nominative

20

