
Intermediate Representation

With the fully analyzed program 
expressed as an annotated AST, it’s 

time to translate it into code
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Compile-time

Decide layout of run-time data values 
• use direct reference at precomputed offsets, not e.g. 

hash table lookups 

Decide where variable contents will be stored 
• registers 
• stack frame slots at precomputed offsets 
• global memory 

Generate machine code to do basic operations 
• just like interpreting expression, except generate code 

that will evaluate it later 

Do optimizations across instructions if desired 



Compilation Plan

First, translate typechecked ASTs into linear sequence 
of simple statements called intermediate code
– a program in an intermediate language (IL) [also IR]
– source-language, target-language independent 

Then, translate intermediate code into target code 

Two-step process helps separate concerns 
– intermediate code generation from ASTs focuses on 

breaking down source-language constructs into simple and 
explicit pieces 

– target code generation from intermediate code focuses on 
constraints of particular target machines

Different front ends and back ends can share IL; IL can 
be optimized independently of each



Run-time storage layout:
focus on compilation, not interpretation

• Plan how and where to keep data at run-time
• Representation of

– int, bool, etc.
– arrays, records, etc.
– procedures

• Placement of
– global variables
– local variables
– parameters
– results



Data layout of scalars
Based on machine representation

Use hardware representation
(2, 4, or 8 bytes, maybe two words if 
segmented machine)

Pointer

1-2 bytes or wordChar

1 byte or wordBool

Use hardware representation

(2, 4, and/or 8 bytes of memory, maybe 
aligned)

Integer



Data layout of aggregates

• Aggregate scalars together
• Different compilers make different decisions
• Decisions are sometimes machine dependent

– Note that through the discussion of the front-end, we never 
mentioned the target machine

– We didn’t in interpretation, either
– But now it’s going to start to come up constantly
– Necessarily, some of what we will say will be "typical", not 

universal.



Layout of records

• Concatenate layout of 
fields
– Respect alignment 

restrictions
– Respect field order, if 

required by language
• Why might a language 

choose to do this or not 
do this?

– Respect contiguity?

r : record
b : bool;
i : int;
m : record

b : bool;
c : char;

end
j : int;

end;



Layout of arrays

• Repeated layout of 
element type
– Respect alignment of 

element type

• How is the length of the 
array handled?

s : array [5] of
record;

i : int; 
c : char;

end;



Layout of multi-dimensional arrays

• Recursively apply 
layout rule to subarray
first

• This leads to row-major 
layout

• Alternative: column-
major layout
– Most famous example: 

FORTRAN

a : array [3] of  
array [2] of

record;
i : int; 
c : char;

end;

a[1][1]
a[1][2]
a[2][1]
a[2][2]
a[3][1]
a[3][2]



Implications of Array Layout

• Which is better if row-major?  col-major?

a:array [1000, 2000] of int;        

for i:= 1 to 1000 do

for j:= 1 to 2000 do 

a[i,j] := 0 ;

for j:= 1 to 2000 do

for i:= 1 to 1000 do 

a[i,j] := 0 ;



Dynamically sized arrays

• Arrays whose length is 
determined at run-time
– Different values of the same 

array type can have different 
lengths

• Can store length implicitly in 
array
– Where?  How much space?

• Dynamically sized arrays require 
pointer indirection
– Each variable must have fixed, 

statically known size

a : array of 

record;
i : int; 
c : char;

end;



Dope vectors

• PL/1 handled arrays differently, in particular storage 
of the length

• It used something called a dope vector, which was a 
record consisting of
– A pointer to the array
– The length of the array
– Subscript bounds for each dimension

• Arrays could change locations in memory and size 
quite easily



String representation

• A string ≈ an array of characters
– So, can use array layout rule for strings

• Pascal, C strings: statically determined length
– Layout like array with statically determined length

• Other languages: strings have dynamically 
determined length
– Layout like array with dynamically determined length
– Alternative: special end-of-string char (e.g., \0 )



Storage allocation strategies

• Given layout of data structure, where in memory to 
allocate space for each instance?

• Key issue: what is the lifetime (dynamic extent) of a 
variable/data structure?
– Whole execution of program (e.g., global variables)

� Static allocation

– Execution of a procedure activation (e.g., locals)
� Stack allocation

– Variable (dynamically allocated data)
� Heap allocation



Parts of run-time memory

• Code/Read-only data area
– Shared across processes running 

same program

• Static data area
– Can start out initialized or zeroed

• Heap
– Can expand upwards through (e.g. 

sbrk ) system call

• Stack
– Expands/contracts downwards 

automatically

code/RO data

static data

heap

stack



Static allocation

• Statically allocate variables/data structures with 
global lifetime
– Machine code
– Compile-time constant scalars, strings, arrays, etc.
– Global variables
– static locals in C, all variables in FORTRAN

• Compiler uses symbolic addresses
• Linker assigns exact address, patches compiled code



Stack allocation

• Stack-allocate variables/data structures with LIFO 
lifetime
– Data doesn’t outlive previously allocated data on the same 

stack

• Stack-allocate procedure activation records
– A stack-allocated activation record = a stack frame
– Frame includes formals, locals, temps
– And housekeeping: static link, dynamic link, …

• Fast to allocate and deallocate storage
• Good memory locality



Stack allocation II

• What about variables 
local to nested scopes 
within one procedure?

procedure P() {

int x;

for(int i=0; i<10; i++){

double x;

…

}

for(int j=0; j<10; j++){

double y;

…

}

}



Stack allocation: constraints I

• No references to 
stack-allocated 
data allowed after 
returns

• This is violated by 
general first-class 
functions

proc foo(x:int): proctype(int):int;
proc bar(y:int):int;
begin

return x + y;
end bar;

begin
return bar;

end foo;

var f: proctype(int):int;
var g: proctype(int):int;

f := foo(3);    g := foo(4);
output := f(5); output := g(6);



Stack allocation: constraints II

• Also violated if 
pointers to locals are 
allowed

proc foo (x:int): *int;
var y:int;

begin
y := x * 2;
return &y;

end foo;

var w,z:*int;

z := foo(3);
w := foo(4);

output := *z;
output := *w;



Heap allocation

• For data with unknown lifetime
– new/malloc to allocate space
– delete/free/ garbage collection to deallocate

• Heap-allocate activation records of first-class 
functions

• Relatively expensive to manage
• Can have dangling reference, storage leaks

– Garbage collection reduces (but may not eliminate) these 
classes of errors



Stack frame layout

• Need space for
– Formals
– Locals
– Various housekeeping data

• Dynamic link (pointer to caller's stack frame)
• Static link (pointer to lexically enclosing stack frame)
• Return address, saved registers, …

• Dedicate registers to support stack access
– FP - frame pointer: ptr to start of stack frame (fixed)
– SP - stack pointer: ptr to end of stack (can move)



Key property

• All data in stack frame is at a fixed, statically 
computed offset from the FP

• This makes it easy to generate fast code to access 
the data in the stack frame
– And even lexically enclosing stack frames

• Can compute these offsets solely from the symbol 
tables
– Based also on the chosen layout approach
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Accessing locals

• If a local is in the same stack frame then
t := *(fp + local_offset)

• If in lexically-enclosing stack frame
t := *(fp + static_link_offset)
t := *(t + local_offset)

• If farther away
t := *(fp + static_link_offset)
t := *(t + static_link_offset)
…
t := *(t + local_offset)



At compile-time…

• …need to calculate
– Difference in nesting depth of use and definition
– Offset of local in defining stack frame
– Offsets of static links in intervening frames



Calling conventions

• Define responsibilities of caller and callee
– To make sure the stack frame is properly set up and torn 

down

• Some things can only be done by the caller
• Other things can only be done by the callee
• Some can be done by either
• So, we need a protocol



Typical calling sequence

• Caller
– Evaluate actual args

• Order?

– Push onto stack
• Order?
• Alternative: First k args

in registers

– Push callee's static link 
• Or in register?  Before 

or after stack 
arguments?

– Execute call instruction
• Hardware puts return 

address in a register

• Callee
– Save return address on stack
– Save caller’s frame pointer 

(dynamic link) on stack
– Save any other registers that 

might be needed by caller
– Allocates space for locals, other 

data
sp := sp – size_of_locals

– other_data

• Locals stored in what order?

– Set up new frame pointer
(fp := sp )

– Start executing callee’s code



Typical return sequence

• Callee
– Deallocate space for local, 

other data
sp := sp + size_of_locals

+ other_data

– Restore caller’s frame pointer, 
return address & other regs, all 
without losing addresses of 
stuff still needed in stack

– Execute return instruction

• Caller
– Deallocate space for 

callee’s static link, args
• sp := fp

– Continue execution in 
caller after call



Accessing procedures
similar to accessing locals

• Call to procedure declared in same scope:
static_link := fp
call p

• Call to procedure in lexically-enclosing scope:
static_link := *(fp + static_link_offset)
call p

• If farther away
t := *(fp + static_link_offset)
t := *(t  + static_link_offset)
…
static_link := *(t + static_link_offset)
call p



Some questions

• Return values?
• Local, variable-sized, arrays

proc P(int n) {

var x array[1 .. n] of int;

var y array[-5 .. 2*n] of array[1 .. n] int;

…

}

• Max length of dynamic-link chain?
• Max length of static-link chain?



Exercise: apply to this example

module M;
var x:int;
proc P(y:int);

proc Q(y:int);
var qx:int;

begin R(x+y);end Q;
proc R(z:int);

var rx,ry:int;
begin P(x+y+z);end R;

begin Q(x+y); R(42); P(0); end P;
begin

x := 1;
P(2);

end M.



Compilation Plan

First, translate typechecked ASTs into linear sequence 
of simple statements called intermediate code
– a program in an intermediate language (IL) [also IR]
– source-language, target-language independent 

Then, translate intermediate code into target code 

Two-step process helps separate concerns 
– intermediate code generation from ASTs focuses on 

breaking down source-language constructs into simple and 
explicit pieces 

– target code generation from intermediate code focuses on 
constraints of particular target machines

Different front ends and back ends can share IL; IL can 
be optimized independently of each



MiniJava’s Intermediate Language
Want intermediate language to have only simple, explicit 

operations, without "helpful" features 
• humans won’t write IL programs! 
• C-like is good 

Use simple declaration primitives
• global functions, global variables 
• no classes, no implicit method lookup, no nesting 

Use simple data types
• ints, doubles, explicit pointers, records, arrays 
• no booleans
• no class types, no implicit class fields 
• arrays are naked sequences; no implicit length or bounds 

checks 

• Use explicit gotos instead of control structures
• Make all implicit checks explicit (e.g. array bounds checks) 
• Implement method lookup via explicit data structures and code



MiniJava’s IL (1) 
Program ::= {GlobalVarDecl} {FunDecl} 
GlobalVarDecl ::= Type ID [ = Value] ;

Type ::= int | double | *Type   
| Type [] | { {Type ID}/ , } | fun

Value ::= Int | Double | &ID   
| [ {Value}/, ] | { {ID = Value}/ , }

FunDecl ::= Type ID ( {Type ID}/ ,)

{ {VarDecl} {Stmt} }

VarDecl ::= Type ID ; 
Stmt ::= Expr ; | LHSExpr = Expr ;

| iffalse Expr goto Label ;

| iftrue Expr goto Label ;

| goto Label ; | label Label ;

| throw new Exception( String ) ;

| return Expr ;



MiniJava’s IL (2)
Expr ::= LHSExpr | Unop Expr

| Expr Binop Expr
| Callee ( {Expr}/ , )

| new Type [ [Expr ]]   
| Int | Double   | & ID 

LHSExpr ::= ID   | * Expr
| Expr -> ID [ [ Expr ] ] 

Unop ::= -.int |  -.double  |  not |  int2double

Binop ::= ( +| -| *| /) .( int| double)   
| ( <| <=| >=| >| ==| !=) .( int| double)   
| <.unsigned

Callee ::= ID | ( * Expr )

| String 



Intermediate Code Generation 
Choose representations for source-level data types 

• translate each ResolvedType into ILType (s) 

Recursively traverse ASTs, creating corresponding IL pgm
• Expr ASTs create ILExpr ASTs
• Stmt ASTs create ILStmt ASTs

• MethodDecl ASTs create ILFunDecl ASTs

• ClassDecl ASTs create ILGlobalVarDecl ASTs
• Program ASTs create ILProgram ASTs

• Traversal parallels typechecking and evaluation 
traversals 

• ICG operations on (source) ASTs named lower

• IL AST classes in IL subdirectory



Data Type Representation (1)

What IL type to use for each source type? 
• (what operations are we going to need on them?) 
int: 

boolean: 

double:



Data Type Representations (2)

What IL type to use for each source type? 
• (what operations are we going to need on them?) 
class B { 

int i; 

D j; 

}

Instance of Class B



Inheritance
How to lay out subclasses

– Subclass inherits from superclass
– Subclass can be assigned to a variable of superclass type 

implying subclass layout must “match” superclass layout
class B { 

int i; 
D j; 

} 
class C extends B { 

int x; 
F y; 

}

• instance of class C: 



Methods

How to translate a method? 
Use a function 

– name is "mangled": name of class + name of method 
– make this an explicit argument 

Example: 
class B { ... 

int m(int i, double d) { ... body ... } 
}

B’s method mtranslates to 
int B_m(*{...B...} this, int i, double d) 

{ ... translation of body ... }



Methods in Instances
To support run-time method lookup, need to make 

method function pointers accessible from each 
instance 

Build a record of pointers to functions for each class, 
with members for each of a class’s methods (a.k.a. 
virtual function table, or vtbl) 

• Example: 
class B { 

... 
int m(...) { ... } 
E n(...) { ... } 

}

• B ’s method record value:
{ *fun m = &B_m, *fun n = &B_n }



Method Inheritance
A subclass inherits all the methods of its superclasses

• its method record includes all fields of its superclass

Overriding methods in subclass share same member of 
superclass, but change its value 

• Example: 
class B { ... 

int m(...) { ... } 

E n(...) { ... }

} 

class C extends B { ... 

int m(...) { ... }  // override 

F p(...) { ... } 

}

B’s method record value: { *fun m = &B_m, *fun n = &B_n }
C’s method record value: {*fun m=&C_m,*fun n=&B_n,*fun 

p=&C_p}



Shared Method Records
Every instance of a class shares the same method record value 

implying each instance stores a pointer to class’s method record 

B’s instance layout (type):
*{ *{ *fun m, *fun n } vtbl, 

int i,    

*{...D...} j }

C’s instance layout (type):
*{ *{ *fun m, *fun n, *fun p } vtbl, 

int i,    

*{...D...} j,   

int x,    

*{...F...} y }

C’s vtbl layout extends B’s 
C’s instance layout extends B’s 
B instances’ vtbl field initialized to B’s vtbl record 

C instances’ vtbl field initialized to C’s vtbl record



Method Calls
Translate a method invocation on an instance into a 

lookup in the instance’s vtbl then an indirect function 
call 

Example: 
B b; 
... 
b.m(3, 4.5) 

Translates to 
*{ *{ *fun m, *fun n } vtbl, 

int i,    
*{...D...} j } b; 

... 
*{ *fun m, *fun n } b_vtbl = b->vtbl; 
*fun b_m = b_vtbl->m; 
(*b_m)(b, 3, 4.5)



Data Type Representation (3)

What IL type to use for each source type? 
• (what operations are we going to need on them?) 
array of T:



Main ICG Operations
ILProgram Program.lower();

• translate the whole program into an ILProgram
void ClassDecl.lower(ILProgram); 

• translate method decls
• declare the class’s method record (vtbl) 
void MethodDecl.lower(ILProgram, ClassSymbolTable);

• translate into IL fun decl, add to IL program 
void Stmt.lower(ILFunDecl);

• translate into IL statement(s), add to IL fun decl
ILExpr Expr.evaluate(ILFunDecl); 

• translate into IL expr, return it 
ILType Type.lower(); 
ILType ResolvedType.lower(); 

• return corresponding IL type



An Example ICG Operation

class IntLiteralExpr extends Expr { 

int value; 

ILExpr lower(ILFunDecl fun) { 

return new ILIntConstantExpr(value);    

} 

}



An Example ICG Operation

class AddExpr extends Expr { 

Expr arg1; 

Expr arg2; 

ILExpr lower(ILFunDecl fun) { 

ILExpr arg1_expr = arg1.lower(fun); 

ILExpr arg2_expr = arg2.lower(fun); 

return new ILIntAddExpr(arg1_expr, 
arg2_expr);    

}

}



Example Overloaded ICG Operation
class EqualExpr extends Expr { 

Expr arg1; 

Expr arg2; 

ILExpr lower(ILFunDecl fun) { 

ILExpr arg1_expr = arg1.lower(fun); 

ILExpr arg2_expr = arg2.lower(fun); 

if (arg1.getResultType().isIntType() &&  

arg2.getResultType().isIntType()) { 

return new ILIntEqualExpr(arg1_expr, arg2_expr); 

} else if (arg1.getResultType().isBoolType() && 

arg2.getResultType().isBoolType()) { 

return new ILBoolEqualExpr(arg1_expr, arg2_expr); 

} else { 

throw new InternalCompilerError(...); 

}    

}

}



An Example ICG Operation

class VarDeclStmt extends Stmt { 

String name; 

Type type; 

void lower(ILFunDecl fun) { 

fun.declareLocal(type.lower(), name);    

} 

}

declareLocal declares a new local variable in the IL function



ICG of Variable References
class VarExpr extends Expr { 

String name; 

VarInterface var_iface;  // set during typechecking
ILExpr lower(ILFunDecl fun) { 

return var_iface.generateRead(fun);    

} 

} 

class AssignStmt extends Stmt { 

String lhs; 

Expr rhs; 

VarInterface lhs_iface;  // set during typechecking
void lower(ILFunDecl fun) { 

ILExpr rhs_expr = rhs.lower(fun); 

lhs_iface.generateAssignment(rhs_expr, fun);    

} 

}

generateRead/generateAssignment gen IL code to read/assign the variable 
• code depends on the kind of variable (local vs. instance) 



ICG of Instance Variable References

class InstanceVarInterface extends VarInterface { 
ClassSymbolTable class_st; 
ILExpr generateRead(ILFunDecl fun) { 

ILExpr rcvr_expr =   
new ILVarExpr(fun.lookupVar("this")); 

ILType class_type = 
ILType.classILType(class_st); 

ILRecordMember var_member = 
class_type.getRecordMember(name); 

return new ILFieldAccessExpr(rcvr_expr, 
class_type, 
var_member); 

}



ICG of Instance Variable Reference
void generateAssignment(ILExpr rhs_expr, 

ILFunDecl fun) { 
ILExpr rcvr_expr =   

new ILVarExpr(fun.lookupVar("this")); 
ILType class_type = 

ILType.classILType(class_st); 
ILRecordMember var_member = 

class_type.getRecordMember(name); 
ILAssignableExpr lhs = 

new ILFieldAccessExpr(rcvr_expr, 
class_type, 
var_member); 

fun.addStmt(new ILAssignStmt(lhs, rhs_expr)); 
} 

}



ICG of if Statements
What IL code to generate for an if statement? 
if ( testExpr) thenStmt else elseStmt



ICG of if statements
class IfStmt extends Stmt { 

Expr test; 
Stmt then_stmt; 
Stmt else_stmt; 
void lower(ILFunDecl fun) { 

ILExpr test_expr = test.lower(fun); 
ILLabel false_label = fun.newLabel(); 
fun.addStmt( 

new ILCondBranchFalseStmt(test_expr ,                           
false_label)); 

then_stmt.lower(fun); 
ILLabel done_label = fun.newLabel(); 
fun.addStmt(new ILGotoStmt(done_label)); 
fun.addStmt(new ILLabelStmt(false_label)); 
else_stmt.lower(fun); 
fun.addStmt(new ILLabelStmt(done_label));    

} 
} 



ICG of Print Statements

What IL code to generate for a print statement? 
System.out.println(expr); 

No IL operations exist that do printing (or any kind of 
I/O)! 



Runtime Libraries

Can provide some functionality of compiled program in 
– external runtime libraries 
– libraries written in any language, compiled separately 
– libraries can contain functions, data declarations 

Compiled code includes calls to functions & references to 
data declared libraries 

Final application links together compiled code and 
runtime libraries 

Often can implement functionality either through 
compiled code or through calls to library functions 
– tradeoffs?



ICG of Print Statements

class PrintlnStmt extends Stmt { 
Expr arg; 
void lower(ILFunDecl fun) { 

ILExpr arg_expr = arg.lower(fun); 
ILExpr call_expr = 

new ILRuntimeCallExpr("println_int ",                       
arg_expr); 

fun.addStmt(new ILExprStmt(call_expr));    
} 

}

What about printing doubles? 



ICG of new Expressions

What IL code to generate for a new expression? 
class C extends B { 

inst var decls

method decls

} 

... new C() ...



ICG of new Expressions

class NewExpr extends Expr { 

String class_name; 

ILExpr lower(ILFunDecl fun) {
generate code to: 

allocate instance record 

initialize vtbl field with class’s method record 
initialize inst vars to default values 

return reference to allocated record   

} 

}



An Example ICG Operation

class MethodCallExpr extends Expr { 
String class_name; 

ILExpr lower(ILFunDecl fun) {
generate code to: 

evaluate receiver and arg exprs
test whether receiver is null 
load vtbl member of receiver
load called method member of vtbl
call fun ptr, passing receiver and args

return call expr
} 

}



ICG of Array Operations

What IL code to generate for array operations? 
new type[expr] 

arrayExpr.length

arrayExpr[ indexExpr]



Other Data Types
Nested records without implicit pointers, as in C 

struct S1 { 
int x; 
struct S2 { 

double y; 
S3* z; 

} s2;
int w; 

} s1;

Unions, as in C 
union U { 

int x; 
double y; 
S3* z; 
int w; 

} u;



Other Data Types

Multidimensional arrays: T[ ][ ] ... 
– rectangular matrix? 
– array of arrays? 

Strings 
– null-terminated arrays of characters, as in C 
– length-prefixed array of characters, as in Java 



Storage Layout

Where to allocate space for each variable/data structure? 

Key issue: what is the lifetime (dynamic extent) of a 
variable/data structure? 

• whole execution of program (global variables)
=> static allocation

• execution of a procedure activation (formals, local 
vars) 
=> stack allocation 

• variable (dynamically-allocated data) 
=> heap allocation



Run-time Memory Allocation

Code/RO data area
– read-only data & machine instruction area 
– shared across processes running same program 

Static data area 
– place for read/write variables at fixed location in memory 
– can start out initialized, or zeroed 

Heap 
– place for dynamically allocated/freed data 
– can expand upwards through sbrk system call 

Stack 
– place for stack-allocated/freed data 
– expands/contracts downwards automatically 

Stack

Heap

Static

Code/RO



Static Allocation
Statically allocate variables/data structures with global 

lifetime 
– global variables in C, static class variables in Java 
– static local variables in C, all locals in Fortran 
– compile-time constant strings, records, arrays, etc. 
– machine code 

Compiler uses symbolic address 
Linker assigns exact address, patches compiled code 

• ILGlobalVarDecl to declare statically allocated 
variable 

• ILFunDecl to declare function 
• ILGlobalAddressExpr to compute address of 

statically allocated variable or function



Stack Allocation
Stack-allocate variables/data structures with LIFO 

lifetime 
– last-in first-out (stack discipline): data structure doesn’t 

outlive previously allocated data structures on same stack 

Activation records usually allocated on a stack 
– a stack-allocated a.r. is called a stack frame
– frame includes formals, locals, static link of procedure 
– dynamic link = stack frame above 

Fast to allocate & deallocate storage 
Good memory locality 
ILVarDecl to declare stack allocated variable
ILVarExpr to reference stack allocated variable 

– both with respect to some ILFunDecl



Problems with Stack Allocation (1)
Stack allocation works only when can’t have references 

to stack allocated data after containing function 
returns 

Violated if first-class functions allowed 
(int(*)(int)) curried(int x) { 

int nested(int y) { return x+y; } 
return &nested; 

} 
(int(*)(int)) f = curried(3); 
(int(*)(int)) g = curried(4); 
int a = f(5); 

int b = g(6);

// what are a and b? 



Problems with Stack Allocation (2)

Violated if inner classes allowed 
Inner curried(int x) { 

class Inner { 
int nested(int y) { return x+y; } 

}; return new Inner(); 
}

Inner f = curried(3); 
Inner g = curried(4); 
int a = f.nested(5); 

int b = g.nested(6);

// what are a and b?



Problems with Stack Allocation (3)

Violated if pointers to locals are allowed 
int* addr(int x) { return & x; } 

int* p = addr(3); int* q = addr(4); 

int a = (*p) + 5; 

int b = (*p) + 6; 

// what are a and b?



Heap Allocation
Heap-allocate variables/data structures with unknown 

lifetime 
• new/malloc to allocate space 
• delete/free /garbage collection to deallocate space 

Heap-allocate activation records (environments at least) 
of first-class functions 

Put locals with address taken into heap-allocated 
environment, or make illegal, or make undefined 

Relatively expensive to manage 
Can have dangling references, storage leaks if don’t free 

right 
• use automatic garbage collection in place of manual free to avoid 

these problems 

ILAllocateExpr , ILArrayedAllocateExpr to 
allocate heap; Garbage collection implicitly frees heap



Parameter Passing

When passing arguments, need to support the right 
semantics 

An issue: when is argument expression evaluated? 
• before call, or if & when needed by callee? 

Another issue: what happens if formal assigned in 
callee? 

• effect visible to caller? if so, when? 
• what effect in face of aliasing among arguments, lexically 

visible variables? 

Different choices lead to different representations for 
passed arguments and different code to access 
formals



Some Parameter Passing Modes

Parameter passing options: 

• call-by-value, call-by-sharing 
• call-by-reference, call-by-value-result, call-by-

result 
• call-by-name, call-by-need 
• ...



Call-by-value
If formal is assigned, caller’s value remains unaffected 

class C { 

int a; 

void m(int x, int y) { 

x = x + 1; 

y = y + a; 

} 

void n() { 

a = 2; 

m(a, a); 

System.out.println(a); 

} 

}

Implement by passing copy of argument value 
• trivial for scalars: ints, booleans, etc. 
• inefficient for aggregates: arrays, records, strings, ...



Call-by-sharing
If implicitly reference aggregate data via pointer (e.g. Java, 

Lisp, Smalltalk, ML, ...) then call-by-sharing is call-by-
value applied to implicit pointer 
– “call-by-pointer-value”
class C {                      

int[] a = new int[10];         

void m(int[] x, int[] y) {     

x[0] = x[0] + 1; 

y[0] = y[0] + a[0];      

x = new int[20]; 

}
void n() {

a[0] = 2;

m(a, a);

System.out.println(a);

}

}

• efficient, even for big aggregates 
• assignments of formal to a 
different aggregate (e.g. x = ... ) 
don’t affect caller 
• updates to contents of aggregate 
(e.g. x[...] = ... ) visible to 
caller immediately



Call-by-reference
If formal is assigned, actual value is changed in caller

• change occurs immediately 
class C { 

int a; 

void m(int & x, int & y) { 

x = x + 1; 

y = y + a; 

} 

void n() { 

a = 2; 

m(a, a); 

System.out.println(a); 

} 

}

Implement by passing pointer to actual
• efficient for big data structures 
• references to formal do extra dereference, implicitly 

Call-by-value-result: do assign-in, assign-out
• subtle differences if same actual  passed to multiple formals 



Call-by-result
Write-only formals, to return extra results; no incoming 

actual value expected 
• “out parameters”
• formals cannot be read in callee, actuals don’t need to be 

initialized in caller 
class C { 

int a; 

void m(int &out x, int &out y) { 

x = 1; 

y = a + 1; 

} 

void n() { 

a = 2; 

int b; 

m(b, b); 

System.out.println(b); 

} 

}

Can implement as in 
call-by-reference or 
call-by-value-result

Can implement as in 
call-by-reference or 
call-by-value-result



Call-by-name, call-by-need

Variations on lazy evaluation
– only evaluate argument expression if & when 

needed by callee function 

Supports very cool programming tricks 
Hard to implement efficiently in traditional 

compiler 
Incompatible with side-effects implies only in 

purely functional languages, e.g. Haskell, 
Miranda



Original Call-by-name
Algol 60 report: “Substitute actual for formal, evaluate.”
Consequences:

procedure CALC (a,b,c,i); real a,b,c; integer i;

begin i:= 1; a:=0; b:=1;

loop: a := a+c;

b := b*c;

if i = 10 then go to finish;

i := i+1; go to loop;

finish: end;

CALC(sum, product, b*(b-j); j);



Original Call-by-name
procedure CALC (a,b,c,i); real a,b,c; integer i;

begin j:= 1; sum:=0; product:=1;

loop: sum := sum+(b*(b-j));

product := product*(b*(b-j));

if j = 10 then go to finish;

j := j+1; go to loop;

finish: end;

CALC(sum, product, b*(b-j); j);

sum := Σj=1..10 b*(b-j)

product := Πj=1..10 b*(b-j)


