Bottom-up parsing

Construct parse tree for input from leaves up

+ reducing a string of tokens to single start symbol
(inverse of deriving a string of tokens from start symbol)

“Shift-reduce” strategy:
+ read (“shift”) tokens until seen r.h.s. of “correct” production
+ reduce r.h.s. to l.h.s. nonterminal, then continue
» done when all input read and reduced to start nonterminal

Craig Chambers 68 CSE 401

LR(k) parsing

LR(k) parsing algorithms
« Left-to-right scan of input, Rightmost derivation
» ktokens of lookahead

The most general kind of bottom-up parsing

Strictly more general than LL(k)

+ gets to look at whole rhs of production before deciding what
to do, not just first k tokens of rhs

+ can handle left recursion and common prefixes fine
Still as efficient as any top-down or bottom-up parsing method

Complex to implement
» need automatic tools to construct parser from grammar

Craig Chambers 69 CSE 401

LR parsing tables

Construct parsing tables implementing a FSA plus a stack
+ rows: states of parser
» columns: token(s) of lookahead
* entries: action of parser
« shift, then goto state S
» reduce production “LHS ::= RHS"
« accept
* error

Algorithm to construct FSA similar to
algorithm to build DFA from NFA

+ each state represents set of possible "places" in parsing
LR(k) algorithm builds big tables
LALR(k) algorithm has fewer states = smaller tables

« less general than LR(k), but still good in practice

Most parser generators, including yacc and cup,
are LALR(1)

Craig Chambers 70 CSE 401

LR(0) parser generation

Key idea:
simulate where input might be in grammar as it reads tokens

"Where input might be in grammar" captured by set of items,
which forms a state in the parser's FSA

* LR(0) item: 1hs ::= rhs production, with dot in rhs
somewhere marking what’s been read (shifted) so far
» LR(k) item: also add k tokens of lookahead to each item

Example grammar:
S ::=beep | { L}
L ::=S | L ; S

Add an initial start productionp : :
+ $represents end-of-input

Il
2]
0

Initial item:
P ::=.5S §

Craig Chambers 71 CSE 401

Closure

Initial state is closure of initial item

« closure: if dot before non-terminal, add all productions for
non-terminal with dot at the start

« "epsilon transitions"

State 1:
P ::=.9S §
S ::= . beep
S = { L}
Craig Chambers 72 CSE 401

State transitions

Given set of items, compute new state(s) for each symbol
(terminal and non-terminal) after dot

« state transitions correspond to shift actions

New item derived from old item by shifting dot over symbol
+ then do closure of this item to compute new state

State 1:
P ::= .S § S ::= . beep S ::= . { L}

State 2 reached on transition that shifts s:
P ::=S . §

State 3 reached on transition that shifts beep:
S ::= beep .

State 4 reached on transition that shifts {:

S ::={ . L}

L ::= . S

L ::= L ; S

S ::= . beep

S ::=. { L}

Craig Chambers 73 CSE 401

Reducing states

If state has 1hs ::= rhs . item,
then the state has a reduce 1hs ::= rhs action
Example:
State 3:
S ::= beep .
reduce S ::= beep

Conflicting actions?
+ what if other items in this state shift?
+ what if other items in this state reduce differently?

Craig Chambers 74 CSE 401

Accepting states

Special case:
reduce P ::= ... § . action replaced with accept action

Example:
State 2:
P ::=5 . §
on 8, shift and goto State 5
State 5:

P ::=S5 § .
accept

Craig Chambers 75 CSE 401

Rest of the states (part 1)

State 4:

S ::={ . L}
L ::= .S

L ::= . L ; S
S ::= . beep
S ::= . { L}

on beep, shift and goto State 3
on {, shift and goto State 4
on s, shift and goto State 6
on L, shift and goto State 7

State 6:

L ::=S
reduce L ::= S

State 7:

S ::={L .}
L ::=L . ; S

on }, shift and goto State 8
on ;, shift and goto State 9

Craig Chambers 76 CSE 401

Rest of the states (part 2)

State 8:
S ::={ L}
reduce S ::= { L }

State 9:
L ::=L ; . S
S ::= . beep
S ::=. { L}
on beep, shift and goto State 3
on {, shift and goto State 4
on s, shift and goto State 10

State 10:
L ::=L ; S .
reduce 1. ::= L ; S

(whew)

Craig Chambers 77

CSE 401

Building LR(0) tables from the states & transitions

Represent state machine using two tables:
action table and goto table

» each has a row per state

Action table: single column giving each state’s action
(shift, reduce, or accept)

Goto table: one column for each terminal & non-terminal symbol
For every "state i: on X, shift and goto state j' transition:
* put shiftin row j of action table

* put "goto J'inrow /i, column X, of goto table

For every "state i: reduce 1hs ::= rhs" action:

* put reduce 1hs ::= rhsinrow jof action table

For every "state i: accept" action:
» put acceptin row i of action table

Better not put more than one action in any row!

Craig Chambers 78 CSE 401

Table for this grammar

Goto

State | Action

{ } beep ; S $
1 S g4 g3 g2
2 s g5
3 r S ::= beep
41 s Joo| || [o6]q7 |
5 a
6 r L ::= 8
70os | e e[| |
8 r S ::={ L}
o | s o+ | || [o0] |
10 r L ::=L ; S

Craig Chambers 79

CSE 401

Execution of parsing table

Parser state:
« stack of states, initialized to "1"

+ <shifted/reduced symbols> . <unconsumed tokens>,
initialized to . <input tokens>"

To run the parser, repeat these two steps:
» do action(S), where S is state on top of stack

» push goto(S,X) onto stack, where S'is state on top of stack
and Xis symbol to left of .

« if goto(S,X) empty, report syntax error

Semantics of actions:

shift:
» move first unconsumed token across . to end of shifted
tokens
reduce LHS ::= RHS
« replace |RHS| symbols from end of shifted/reduced symbols
with LHS

* build parse tree node for LS from RHS subtrees
* pop |RHS| states from state stack
accept:
» done parsing! return parse tree

Craig Chambers 80 CSE 401

Example

{ beep ; { beep } } $

Craig Chambers

81

CSE 401

Problems in shift-reduce parsing

Can write grammars that cannot be handled with shift-reduce
parsing
« ambiguous grammars will always have these problems
+ some unambiguous grammars do, too

Shift/reduce conflict:
« state has both shift action(s) and reduce actions

Reduce/reduce conflict:
« state has more than one reduce action

Craig Chambers 82 CSE 401

Shift/reduce conflicts

Example:
E ::=E+ T | T

Can shift +
CanreduceE ::= T

Another example:
S ::= if E then S |

if E then S else S |

State:

S = if E then S

S ::= if E then S . else S
Can shift else

Canreduce S ::= if E then S

Craig Chambers

83

CSE 401

Avoiding shift/reduce conflicts

Reduce/reduce conflicts

Can add lookahead to action table Example:
« fixes expression grammar conflict Stmt = Type id ; | LHS = Expr ; |
» won't fix conflicts due to ambiguities, e.g. if/else
LHS —id | LHS [Expr 1 |
Can resolve in favor of shifting s
« tries to find longest r.h.s. before reducing Type 2i=dd | Type [1 |
« works well in practice, e.g. if/else
* yacc, cup, et al. do this
State:
Can rewrite grammar to remove conflict Type ::=id .
* E.g. MatchedStmt vs. UnmatchedStmt LHS ::=dd .
» E.g. change language by adding end
Canreduce Type ::= id
Canreduce LHS ::= id
Craig Chambers 84 CSE 401 Craig Chambers 85 CSE 401
Avoiding reduce/reduce conflicts ASTs

Can rewrite grammar to remove conflict
+ can be hard
» e.g. C/C++ declaration vs. expression problem
» e.g. Minidava array declaration vs. array assignment problem

Can resolve in favor of one of the reduce actions
« unlike shift/reduce, no good way to choose

* yacc, cup, et al. pick reduce action for production listed
textually first in specification

Craig Chambers 86 CSE 401

The parser’s output is an abstract syntax tree (AST)
representing the grammatical structure of the parsed input

ASTs represent only semantically meaningful aspects of input
program, unlike concrete syntax trees which record the
complete textual form of the input program

* no need to record keywords or punctuation like (), ;,else
« rest of compiler only cares about abstract structure

Craig Chambers 87 CSE 401

AST node classes

Each node in an AST is an instance of an AST class
e IfStmt,AssignStmt, AddExpr, VarDecl, etc.

Each AST class declares its own instance variables
holding its AST subtrees

* IfStmt has testExpr, thenStmt, and elseStmt

* AssignStmt has lhsAssignableExpr and rhsExpr
* AddExpr has arglExpr and arg2Expr

* VarDecl has typeExpr and varName

Craig Chambers 88 CSE 401

AST class hierarchy

AST classes organized into an inheritance hierarchy based on
commonalities of meaning and structure

Each "abstract non-terminal" that has multiple alternative
concrete forms will have an abstract class that’s the
superclass of the various alternative forms

* stmt is abstract superclass of IfStmt, AssignStmt, etc.
* Expr is abstract superclass of AddExpr, VarExpr, etc.
* Type is abstract superclass of IntType, ClassType, etc.

Craig Chambers 89 CSE 401

AST extensions in project

New variable declarations:
¢ StaticVarDecl

New types:
¢ DoubleType
* ArrayType

New expressions:
* DoubleliteralExpr
¢ OrExpr
¢ ArrayIndexExpr
¢ ArraylLengthExpr
* ArrayNewExpr

New/changed statements:
* IfStmt can omit else branch
¢ ForStmt
* BreakStmt
* AssignStmt can have ArrayIndexExpr as l.h.s.

Craig Chambers 90 CSE 401

Automatic parser generation in MiniJava

We use the CUP tool to automatically create a parser from a
specification file, Parser/minijava.cup

The Minidava Makef ile automatically rebuilds the parser
whenever its specification file changes

A CUP file has several sections:
« introductory declarations included with the generated
parser
+ declarations of the terminals and nonterminals with their
types

» the AST node or other value returned when finished parsing that
nonterminal or terminal

» precedence declarations
» productions + actions

Craig Chambers 91 CSE 401

Terminal and nonterminal declarations

Terminal declarations we saw before:
/* reserved words: */
terminal CLASS, PUBLIC, STATIC, EXTENDS;

/* tokens with values: */
terminal String IDENTIFIER;
terminal Integer INT LITERAL;

Nonterminals are similar:
nonterminal Program Program;
nonterminal List<RegularClassDecl> ClassDecls;

nonterminal RegularClassDecl ClassDecl;

nonterminal List<Stmt> Stmts;

nonterminal Stmt Stmt;

nonterminal List<Expr> Exprs, MoreExprs;
nonterminal Expr Expr, BaseExpr, AtomicExpr;

nonterminal String Identifier;

(Actually,use List_Stmt_inplace of List<Stmt>, etc., since
CUP doesn’t handle Java 1.5 generics directly)

Craig Chambers 92 CSE 401

Precedence declarations

Can specify precedence and associativity of operators
» equal precedence in a single declaration
+ lowest precedence textually first
» specify left, right, or nonassoc with each declaration

Examples:
precedence left AND_AND;

precedence nonassoc EQUALS_EQUALS,
EXCLAIM_EQUALS;

precedence left LESSTHAN, LESSEQUAL,
GREATEREQUAL, GREATERTHAN;

precedence left PLUS, MINUS;
precedence left STAR, SLASH;
precedence left EXCLAIM;
precedence left PERIOD;

Craig Chambers 93 CSE 401

Productions

All of the form:
LHS ::= RHS1 {: Javacode1 :}
| RHS2 {: Javacode?2 :}

(-
| RHSn {: Javacoden :};

Can label symbols in RHS with : var suffix to refer to its result
value in Java code

* varleft is set to line in input where var symbol was

E.g. (slightly more complicated in real minijava.cup):

Expr ::= Expr:argl PLUS Expr:arg2

{: RESULT = new AddExpr(
argl,arg2,arglleft); :}

INT_LITERAL:value

{: RESULT = new IntLiteralExpr(
value.intValue() ,valueleft); :}

| Expr:rcvr PERIOD Identifier:message
OPEN_PAREN Exprs:args CLOSE_PAREN
{: RESULT = new MethodCallExpr (
rcvr,message,args,rcvrleft); :}

Craig Chambers 94 CSE 401

Error handling

How to handle syntax error?

Option 1: quit compilation
+ easy
- inconvenient for programmer

Option 2: error recovery
+ try to catch as many errors as possible on one compile
- avoid streams of spurious errors

Option 3: error correction

+ fix syntax errors as part of compilation
- hard!!

Craig Chambers 95 CSE 401

Panic mode error recovery

When find a syntax error, skip tokens until reach a “landmark”
* landmarks in Minidava: ;,), }

+ once a landmark is found,
hope to have gotten back on track

In top-down parser, maintain set of landmark tokens as
recursive descent proceeds

» landmarks selected from terminals later in production

+ as parsing proceeds, set of landmarks will change,
depending on the parsing context

In bottom-up parser, can add special error nonterminals,
followed by landmarks
« if syntax error, then will skip tokens till see landmark, then
reduce and continue normally

E.g.
Stmt = | error ; | { error }
Expr t:= ... | (error)

Craig Chambers 96 CSE 401

