Syntactic Analysis / Parsing

Purpose: stream of tokens = abstract syntax tree (AST)

AST:
« captures hierarchical structure of input program
 primary representation of program for rest of compiler

Plan:
+ study how grammars can specify syntax
« study algorithms for constructing ASTs from token streams
+ study MiniJava implementation

Craig Chambers 44 CSE 401

Context-free grammars (CFG’s)

Syntax specified using CFG'’s
* RE’s not powerful enough
» can't handle nested, recursive structure
» general grammars (GG’s) too powerful
» not decidable = parser might run forever!

CFG’s: convenient compromise

+ capture important structural & nesting characteristics
» some properties checked later during semantic analysis

Common notation for CFG’s:
Extended Backus-Naur Form (EBNF)

Craig Chambers 45 CSE 401

Context-free grammar terminology

Terminals: alphabet of language defined by CFG

Nonterminals: symbols defined in terms of terminals and
nonterminals

Production: rule for how a nonterminal (I.h.s.) is defined in
terms of a finite, possibly empty sequence of terminals &
nonterminals

* recursive productions allowed!

Can have multiple productions for same nonterminal
« alternatives

Start symbol: root symbol defining language

Example, in pure BNF:

Program ::= Stmt

Stmt if (Expr) Stmt else Stmt
Stmt while (Expr) Stmt

Notational conveniences = EBNF

Craig Chambers 46 CSE 401

Transition diagrams

“Railroad diagrams”
+ another, more graphical notation for CFG’s

* look like FSA’s, where arcs can be labelled with
nonterminals as well as terminals

Craig Chambers 47 CSE 401

EBNF description of initial MiniJava syntax

Program ::= MainClassDecl {ClassDecl}

class ID

MainClassDecl::

{

public static void main

Derivations and parse trees

Derivation: sequence of expansion steps,
beginning with start symbol,
leading to a string of terminals

Parsing: inverse of derivation

+ given target string of terminals (a.k.a. tokens),
want to recover nonterminals representing structure

Can represent derivation as a parse tree
+ concrete syntax tree

Craig Chambers 49 CSE 401

(String [] ID) { {Stmt} } }
ClassDecl = class ID [extends ID] {
{ClassVarDecl} {MethodDecl} }
ClassVarDecl ::= Type ID ;
MethodDecl ::= public Type ID
([Formal {, Formal}])
{ {Stmt} return Expr ; }
Formal ::= Type ID
Type ::= int | boolean | ID
Stmt ::= Type ID = Expr ;
[{ {stmt} }
| if (Expr) Stmt else Stmt
| while (Expr) Stmt
| System.out.println (Expr) ;
| ID = Expr ;
Expr ::= Expr BinOp Expr
| UnOp Expr
| Expr . ID ([Expr {, Expr}l])
| new ID ()
| ID | this
| Integer | null | true | false
| (Expr)
BinOp =+ | = x|/
| <l <=1 > | > | ==] I=] &&
UnOp = = | !
Craig Chambers 48 CSE 401
Example grammar
E =EOpE | -E | (E) | id
Op ::=+ | = | * | /

Craig Chambers 50

CSE 401

Ambiguity

Some grammars are ambiguous:
» multiple distinct parse trees with same final string

Structure of parse tree captures much of meaning of program;
ambiguity = multiple possible meanings for same program

Craig Chambers 51 CSE 401

Famous ambiguities: “dangling else”

Stmt ::=
| if (Expr) Stmt
| if (Expr) Stmt else Stmt

“if (e;) if (e,) s; else s,

Craig Chambers 52 CSE 401

Resolving the ambiguity

Option 1: add a meta-rule
e.g. “else associates with closest previous i£”

» works, keeps original grammar intact
+ ad hoc and informal

Craig Chambers 53 CSE 401

Resolving the ambiguity (cont.)

Option 2: rewrite the grammar to resolve ambiguity explicitly

Stmt
MatchedStmt

MatchedStmt | UnmatchedStmt

| if (Expr) MatchedStmt
else MatchedStmt
UnmatchedStmt ::= if (Expr) Stmt
| if (Expr) MatchedStmt
else UnmatchedStmt

+ formal, no additional rules beyond syntax
» sometimes obscures original grammar

Craig Chambers 54 CSE 401

Resolving the ambiguity (cont.)

Option 3: redesign the language to remove the ambiguity

Stmt ::=
| if Expr then Stmt end
| if Expr then Stmt else Stmt end

 formal, clear, elegant

+ allows sequence of stmts in then and else branches,
no {, } needed

+ extra end required for every if

Craig Chambers 55 CSE 401

Another famous ambiguity: expressions

=
Il

E Op E E) | id

“ ”»

a+ b *c

Craig Chambers 56 CSE 401

Resolving the ambiguity

Option 1: add some meta-rules,
e.g. precedence and associativity rules

Resolving the ambiguity (cont.)

Option 2: modify the grammar to explicitly resolve the ambiguity

Strategy:
 create a nonterminal for each precedence level
» expr is lowest precedence nonterminal,
each nonterminal can be rewritten with higher

precedence operator,
highest precedence operator includes atomic exprs

+ at each precedence level, use:
« left recursion for left-associative operators
« right recursion for right-associative operators
* no recursion for non-associative operators

Craig Chambers 58 CSE 401

Example:
E ::=EOpE | —E | E++ | (E) | id
Op ::=+ | = | * | / | & | ** | == | < | && | ||
operator precedence | associativity

postfix ++ | highest left

prefix — right

** (expon.) right

* /% left

+, = left

==, < none

&& left

| lowest left

Craig Chambers 57 CSE 401
Example, redone
E ::= EO
EO ::= EO || E1 | E1 left associative
El ::= El && E2 | E2 left associative
E2 ::= E3 (== | <) E3 non associative
E3 ::=E3 (+ | -) E4 | E4 left associative
E4 ::=E4 (* | / | %) E5 | E5 left associative
E5 ::= E6 ** E5 | E6 right associative
E6 ::= - E6 | E7 right associative
E7 ::= E7 ++ | ES8 left associative
E8 ::=4id | (E)

Craig Chambers

59

CSE 401

Resolving the ambiguity (cont.)

Option 3: redesign the language to remove the ambiguity

E.g. Lisp/Scheme syntax, which uses prefix form consistently
for both functions and operators

* no precedence or associativity rules needed

E ti=

(E {E}) | Op | id | int
Op ::= + |

-l *x /s | == < | && | ||

(* (+ a b) c)vs. (+ a (* b c))

Craig Chambers 60 CSE 401

Designing a grammar

Concerns:

* accuracy

+ unambiguity

 formality

* readability, clarity

« ability to be parsed by particular parsing algorithm
» top-down parser = LL(k) grammar
» bottom-up parser = LR(k) grammar

+ ability to be implemented using a particular strategy
* by hand
» by automatic tools

Craig Chambers 61 CSE 401

Parsing algorithms

Given grammar, want to parse input programs
 check legality
» produce AST representing structure
* be efficient

Kinds of parsing algorithms:

» top-down
* bottom-up

Craig Chambers 62 CSE 401

Top-down parsing

Build parse tree for input program from the top (start symbol)
down to leaves (terminals)

Basic issue:

» when "expanding" a nonterminal with some r.h.s.,
how to pick which r.h.s.?

E.g.
Stmt ::= Assign | Call | If | While
Assign ::= Id = Expr ;
Call ::= Id (Expr {, Expr}) ;
If ::= 1if (Test) Stmt

| 1if (Test) Stmt else Stmt
While ::= while (Test) Stmt

Solution: look at input tokens to help decide

Craig Chambers 63 CSE 401

Predictive parsing

Predictive parser:
top-down parser that can select correct rhs looking at
at most k input tokens (the lookahead)

Efficient:
* no backtracking needed
* linear time to parse

Implementation of predictive parsers:

* recursive-descent parser
» each nonterminal parsed by a procedure
« call other procedures to parse sub-nonterminals, recursively
« typically written by hand

+ table-driven parser
» PDA: like table-driven FSA, plus stack to do recursive FSA calls
« typically generated by a tool from a grammar specification

Craig Chambers 64 CSE 401

LL(k) grammars

Can construct predictive parser automatically/easily if grammar
is LL(k)
* Left-to-right scan of input, Leftmost derivation
+ ktokens of lookahead needed, > 1

Some restrictions:

+ no ambiguity (true for any parsing algorithm)
+ no common prefixes of length > k:

If ::= if (Test) Stmt end

| 1f (Test) Stmt else Stmt end

+ no left recursion:

E ::=E+ T | T
+ afew others

Restrictions guarantee that, given kinput tokens,
can always select correct rhs to expand nonterminal

Craig Chambers 65 CSE 401

Eliminating common prefixes

Can left factor common prefixes to eliminate them
 create new nonterminal for different suffixes
+ delay choice till after common prefix

Before:
If ::= 1if (Test) Stmt end
| if (Test) Stmt else Stmt end
After:
If ::= 1if (Test) Stmt IfCont
IfCont ::= end

| else Stmt end

Grammar a bit uglier
Easy to do by hand in recursive-descent parser

Craig Chambers 66 CSE 401

Eliminating left recursion

Can rewrite grammar to eliminate left recursion

Before:

E::=E+T | T

T ::=T*F | F

F o::=41id |

After:

E ::= T ECont

ECont ::= 4+ T ECont | €
T ::= F TCont

TCont ::= * F TCont | €
F si=id |

After, in sugared form:

E ::=T { + T}
T ::=F { *F }
F o::=id |

Sugared form pretty readable still
Easy to implement in hand-written recursive descent
Grammar no longer specifies associativity; must add meta-rules

Craig Chambers 67 CSE 401

