Syntactic Analysis / Parsing

Purpose: stream of tokens = abstract syntax tree (AST)

AST:
« captures hierarchical structure of input program
 primary representation of program for rest of compiler

Plan:
+ study how grammars can specify syntax
« study algorithms for constructing ASTs from token streams
+ study MiniJava implementation
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Context-free grammars (CFG’s)

Syntax specified using CFG'’s
* RE’s not powerful enough
» can't handle nested, recursive structure
» general grammars (GG’s) too powerful
» not decidable = parser might run forever!

CFG’s: convenient compromise

+ capture important structural & nesting characteristics
» some properties checked later during semantic analysis

Common notation for CFG’s:
Extended Backus-Naur Form (EBNF)
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Context-free grammar terminology

Terminals: alphabet of language defined by CFG

Nonterminals: symbols defined in terms of terminals and
nonterminals

Production: rule for how a nonterminal (I.h.s.) is defined in
terms of a finite, possibly empty sequence of terminals &
nonterminals

* recursive productions allowed!

Can have multiple productions for same nonterminal
« alternatives

Start symbol: root symbol defining language

Example, in pure BNF:

Program ::= Stmt

Stmt if ( Expr ) Stmt else Stmt
Stmt while ( Expr ) Stmt

Notational conveniences = EBNF
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Transition diagrams

“Railroad diagrams”
+ another, more graphical notation for CFG’s

* look like FSA’s, where arcs can be labelled with
nonterminals as well as terminals
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EBNF description of initial MiniJava syntax

Program ::= MainClassDecl {ClassDecl}

class ID

MainClassDecl::

{

public static void main

Derivations and parse trees

Derivation: sequence of expansion steps,
beginning with start symbol,
leading to a string of terminals

Parsing: inverse of derivation

+ given target string of terminals (a.k.a. tokens),
want to recover nonterminals representing structure

Can represent derivation as a parse tree
+ concrete syntax tree
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( String [ ] ID ) { {Stmt} } }
ClassDecl = class ID [extends ID] {
{ClassVarDecl} {MethodDecl} }
ClassVarDecl ::= Type ID ;
MethodDecl ::= public Type ID
( [Formal {, Formal}] )
{ {Stmt} return Expr ; }
Formal ::= Type ID
Type ::= int | boolean | ID
Stmt ::= Type ID = Expr ;
[ { {stmt} }
| if ( Expr ) Stmt else Stmt
| while ( Expr ) Stmt
| System.out.println ( Expr ) ;
| ID = Expr ;
Expr ::= Expr BinOp Expr
| UnOp Expr
| Expr . ID ( [Expr {, Expr}l] )
| new ID ()
| ID | this
| Integer | null | true | false
| ( Expr )
BinOp =+ | = x|/
| <l <=1 > | > | ==] I=] &&
UnOp = = | !
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Example grammar
E =EOpE | -E | (E) | id
Op ::=+ | = | * | /
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Ambiguity

Some grammars are ambiguous:
» multiple distinct parse trees with same final string

Structure of parse tree captures much of meaning of program;
ambiguity = multiple possible meanings for same program
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Famous ambiguities: “dangling else”

Stmt ::=
| if ( Expr ) Stmt
| if ( Expr ) Stmt else Stmt

“if (e;) if (e,) s; else s,
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Resolving the ambiguity

Option 1: add a meta-rule
e.g. “else associates with closest previous i£”

» works, keeps original grammar intact
+ ad hoc and informal
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Resolving the ambiguity (cont.)

Option 2: rewrite the grammar to resolve ambiguity explicitly

Stmt
MatchedStmt

MatchedStmt | UnmatchedStmt

| if ( Expr ) MatchedStmt
else MatchedStmt
UnmatchedStmt ::= if ( Expr ) Stmt
| if ( Expr ) MatchedStmt
else UnmatchedStmt

+ formal, no additional rules beyond syntax
» sometimes obscures original grammar
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Resolving the ambiguity (cont.)

Option 3: redesign the language to remove the ambiguity

Stmt ::=
| if Expr then Stmt end
| if Expr then Stmt else Stmt end

 formal, clear, elegant

+ allows sequence of stmts in then and else branches,
no {, } needed

+ extra end required for every if
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Another famous ambiguity: expressions

=
Il

E Op E E ) | id

“ ”»

a+ b *c
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Resolving the ambiguity

Option 1: add some meta-rules,
e.g. precedence and associativity rules

Resolving the ambiguity (cont.)

Option 2: modify the grammar to explicitly resolve the ambiguity

Strategy:
 create a nonterminal for each precedence level
» expr is lowest precedence nonterminal,
each nonterminal can be rewritten with higher

precedence operator,
highest precedence operator includes atomic exprs

+ at each precedence level, use:
« left recursion for left-associative operators
« right recursion for right-associative operators
* no recursion for non-associative operators
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Example:
E ::=EOpE | —E | E++ | ( E) | id
Op ::=+ | = | * | / | & | ** | == | < | && | ||
operator precedence | associativity

postfix ++ | highest left

prefix — right

** (expon.) right

* /% left

+, = left

==, < none

&& left

| lowest left
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Example, redone
E ::= EO
EO ::= EO || E1 | E1 left associative
El ::= El && E2 | E2 left associative
E2 ::= E3 (== | <) E3 non associative
E3 ::=E3 (+ | -) E4 | E4 left associative
E4 ::=E4 (* | / | %) E5 | E5 left associative
E5 ::= E6 ** E5 | E6 right associative
E6 ::= - E6 | E7 right associative
E7 ::= E7 ++ | ES8 left associative
E8 ::=4id | ( E )
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Resolving the ambiguity (cont.)

Option 3: redesign the language to remove the ambiguity

E.g. Lisp/Scheme syntax, which uses prefix form consistently
for both functions and operators

* no precedence or associativity rules needed

E ti=

(E {E} ) | Op | id | int
Op ::= + |

-l *x /s | == < | && | ||

(* (+ a b) c)vs. (+ a (* b c))
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Designing a grammar

Concerns:

* accuracy

+ unambiguity

 formality

* readability, clarity

« ability to be parsed by particular parsing algorithm
» top-down parser = LL(k) grammar
» bottom-up parser = LR(k) grammar

+ ability to be implemented using a particular strategy
* by hand
» by automatic tools
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Parsing algorithms

Given grammar, want to parse input programs
 check legality
» produce AST representing structure
* be efficient

Kinds of parsing algorithms:

» top-down
* bottom-up
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Top-down parsing

Build parse tree for input program from the top (start symbol)
down to leaves (terminals)

Basic issue:

» when "expanding" a nonterminal with some r.h.s.,
how to pick which r.h.s.?

E.g.
Stmt ::= Assign | Call | If | While
Assign ::= Id = Expr ;
Call ::= Id ( Expr {, Expr} ) ;
If ::= 1if ( Test ) Stmt

| 1if ( Test ) Stmt else Stmt
While ::= while ( Test ) Stmt

Solution: look at input tokens to help decide
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Predictive parsing

Predictive parser:
top-down parser that can select correct rhs looking at
at most k input tokens (the lookahead)

Efficient:
* no backtracking needed
* linear time to parse

Implementation of predictive parsers:

* recursive-descent parser
» each nonterminal parsed by a procedure
« call other procedures to parse sub-nonterminals, recursively
« typically written by hand

+ table-driven parser
» PDA: like table-driven FSA, plus stack to do recursive FSA calls
« typically generated by a tool from a grammar specification
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LL(k) grammars

Can construct predictive parser automatically/easily if grammar
is LL(k)
* Left-to-right scan of input, Leftmost derivation
+ ktokens of lookahead needed, > 1

Some restrictions:

+ no ambiguity (true for any parsing algorithm)
+ no common prefixes of length > k:

If ::= if ( Test ) Stmt end

| 1f ( Test ) Stmt else Stmt end

+ no left recursion:

E ::=E+ T | T
+ afew others

Restrictions guarantee that, given kinput tokens,
can always select correct rhs to expand nonterminal
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Eliminating common prefixes

Can left factor common prefixes to eliminate them
 create new nonterminal for different suffixes
+ delay choice till after common prefix

Before:
If ::= 1if ( Test ) Stmt end
| if ( Test ) Stmt else Stmt end
After:
If ::= 1if ( Test ) Stmt IfCont
IfCont ::= end

| else Stmt end

Grammar a bit uglier
Easy to do by hand in recursive-descent parser
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Eliminating left recursion

Can rewrite grammar to eliminate left recursion

Before:

E::=E+T | T

T ::=T*F | F

F o::=41id |

After:

E ::= T ECont

ECont ::= 4+ T ECont | €
T ::= F TCont

TCont ::= * F TCont | €
F si=id |

After, in sugared form:

E ::=T { + T}
T ::=F { *F }
F o::=id |

Sugared form pretty readable still
Easy to implement in hand-written recursive descent
Grammar no longer specifies associativity; must add meta-rules
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