
 a

1

CSE401: Optimization

Larry Ruzzo
Spring 2004

Slides by Chambers, Eggers, Notkin, Ruzzo, and others
© W.L. Ruzzo and UW CSE, 1994-2004

2

Source
Program

Stream
of characters

Sequence
of tokens

Lexical analysis

Abstract Syntax
Tree (AST)

Syntactic analysis

AST+ and
symbol table

Semantic analysis

AST++ and
symbol table

Storage
layout

Intermediate code
generation

Intermediate
representation

Optimization

Intermediate
representation

Target code generation

Executable
code

Target
Program

Prototype compiler structure

3

Optimization

 What:
 Identify inefficiencies in target or

intermediate code

 Replace with equivalent but “better” sequences

 How:
 Deduce as much as possible at compile time

about run time bindings, values, control flow,...

 “Optimize” is a lie.
“Usually improve” is more honest.

4

Example
x := a[i] + b[2];

c[i] := x – 5;

t1 := *(fp + ioffset) // i
t2 := t1 * 4
t3 := fp + t2
t4 := *(t3 + aoffset) // a[i]
t5 := 2
t6 := t5 * 4
t7 := fp + t6
t8 := *(t7 + boffset) // b[2]
t9 := t4 + t8
*(fp + xoffset) := t9 // x := …
t10 := *(fp + xoffset) // x
t11 := 5
t12 := t10 – t11
t13 := *(fp + ioffset) // i
t14 := t13 * 4
t15 := fp + t14
*(t15 + coffset) := t12 // c[i] := …

5

Kinds of optimizations

 Scope of analysis is central to what
optimizations can be performed. A larger
scope may expose better optimizations, but is
more complex
 Peephole: look at adjacent instructions

 Local: look at straight-line sequences of
instructions

 Global (intraprocedural): look at whole procedure

 Interprocedural: look across proceduresIn
cr

ea
si

ng
 s

co
pe

,

op
po

rt
un

ity
, a

nd

co
m

pl
ex

ity

6

Peephole

 After codegen, look at a few adjacent
instructions
 Try to replace them with something better

 If you have
sw $8,12($fp)
lw $12,12($fp)

 You can replace it with
sw $8,12($fp)
mv $12,$8

 a

2

7

Peephole examples: 68k

If you have

sub sp,4,sp
mov r1,0(sp)

mov 12(fp),r1
add r1,1,r1
mov r1,12(fp)

Replace it with

mov r1,-(sp)

inc 12(fp)

8

Peephole optimization of jumps

 Eliminate
 Jumps to jumps

 Conditional
branch over
unconditional
branch

 “Adjacent
instructions”
means
“adjacent in
control flow”

if a < b then

 if c < d then

 # do nothing

 else

 stmt1;

 end;

else

 stmt2;

end;

 if (a≥b)goto 1
 if (c≥d)goto 2
 #do nothing

 goto 3

2:stmt1

3:

 goto 4

1:stmt2

4:

9

How to do peephole opts

 Could be done at IR and/or target level

 Catalog of specific code rewrite
templates

 Scan code with moving window looking
for matches

10

Peephole summary

 You could consider peephole
optimization as increasing the
sophistication of instruction selection

 Relatively easy to do

 Relatively easy to extend

 Relatively easy to ensure correctness

 Relatively high payoff

11

Algebraic simplifications
by peephole or codegen

 “constant folding” and “strength
reduction” are common names for this
kind of optimization
 z := 3 + 4

 z := x + 0
z := x * 1

 z := x * 2
z := x * 8
z := x / 8

 float x,y;
z := (x + y) – y;

12

 Analysis and optimizations within a basic
block

A basic block is a straight-line sequence
of statements with no control flow into or
out of the middle of the sequence

 Local optimizations are more powerful than
peephole (e.g., block may be longer than peephole window)

 Not too hard to implement
 Can be machine-independent, if done on

intermediate code

Local optimization

 a

3

13

Local constant propagation
(aka "constant folding")

 If a constant is assigned to a variable,
replace downstream uses of the
variable with the constant

 If all operands are const, replace with
result

 May enable further constant folding

14

Example

const count : int = 10;

…

x := count * 5;

y := x ^ 3;

t1 := 10

t2 := 5

t3 := t1 * t2

x := t3

t4 := x

t5 := 3

t6 := exp(t4,t5)

y := t6

15

Local dead assignment elimination

 If the left hand side of an assignment is
never read again before being
overwritten, then remove the
assignment

 This sometimes happens while cleaning
up from other optimizations (as with
many of the optimizations we consider)

16

Example

const count : int = 10;

…

x := count * 5;

y := x ^ 3;

x := input;

x := 50
t6 := exp(50,3)
y := t6
x := input()

Intermediate code after
constant propagation

17

Common subexpression elimination

 Avoid repeating the same calculation

 Requires keeping track of available
expressions

18

CSE example: … a[i] + b[i]…

t1 := *(fp + ioffset)

t2 := t1 * 4

t3 := fp + t2

t4 := *(t3 + aoffset)

t5 := *(fp + ioffset)

t6 := t5 * 4

t7 := fp + t6

t8 := *(t7 + boffset)

t9 := t4 + t8

 a

4

19

Intraprocedural optimizations

 Enlarge scope of analysis to entire procedure
 Provides more opportunities for optimization

 Have to deal with branches, merges and loops

 Can do constant propagation, common
subexpression elimination, etc. at this level

 Can do new things, too, like
loop optimizations

 Optimizing compilers usually work at this level

20

Code motion

 Goal: move loop-invariant calculations
out of loops

 Can do this at the source or
intermediate code level

for i := 1 to 10 do
 a[i] := a[i] + b[j];
 z := z + 10000
end

21

At intermediate code level
for i := 1 to 10
do
 a[i] := b[j];
end

 *(fp+ioffset) := 1
_l0:
 if *(fp+ioffset) > 10 goto _l1
 t1 := *(fp+joffset)
 t2 := t1*4
 t3 := fp+t2
 t4 := *(t3+boffset)
 t5 := *(fp+ioffset)
 t6 := t5*4
 t7 := fp+t6
 *(t7+aoffset) := t4
 t8 := *(fp+ioffset)
 t9 := t8+1
 *(fp+ioffset) := t9
 goto _l0
_l1:

22

Loop induction variable elimination

 For-loop index is an induction variable
 Incremented each time through the loop

 Offsets, pointers calculated from it

 If used only to index arrays, can rewrite with
pointers
 Compute initial offsets, pointers before loop

 Increment offsets, pointers each time around loop

 No expensive scaling in the loop

23

Example
for i := 1 to 10 do
 a[i] := a[i] + x;
end

for p := &a[1] to &a[10] do
 *p := *p + x;
end

24

Global register allocation

 Try to allocate local
variables to registers

 If two locals don’t
overlap, then give
them the same
register

 Try to allocate most
frequently used
variables to registers
first

proc f(n:int,x:int):int;
 var sum: int, i:int;
begin
 sum := x;
 for i := 1 to n do
 sum := sum + i;
 end
 return sum;
end f;

 a

5

25

Register allocation by coloring

 As before, IR gen as if infinite regs avail
 Build interference graph:

x := a+5;

y := b*2;
z := x/3;

a := y-2;

 Colorable with few colors (regs)?
NP-hard, but …

 If not, pick a node & generate spill code

x z

y

26

Interprocedural optimizations

 What happens if we expand the scope of the
optimizer to include procedures calling each
other
 In the broadest scope, this is optimization of the

program as a whole

 We can do local, intraprocedural
optimizations at a bigger scope
 For example, constant propagation

 But we can also do entirely new optimizations,
such as inlining

27

Interprocedural opt: Issues

procedure P() {

 x: int;

 x := 10;

 Q();

 x:= x+1;

 if x == 11 then
…

 Q()

 Q(x by value)

 Q(x by reference)

 Q(const x by reference)

 Q(), but Q declared in P

 …

28

Inlining
Replace procedure call with the body of the called

procedure

const pi:real := 3.14159;

proc area(rad:int):int;

begin

 return pi*(rad^2);

end;

…

r := 5;

…

output := area(r);

const pi:real := 3.14159;

proc area(rad:int):int;

begin

 return pi*(rad^2);

end;

…

r := 5;

…

output := pi*(r^2);

29

Questions about inlining:
few answers

 How to decide where the payoff is
sufficient to inline?
 The real decision depends on dynamic

information about frequency of calls

 In most cases, inlining causes the code
size to increase; when is this
acceptable?

 Others?

30

Optimization and debugging

 Debugging optimized code is often hard
 For example, what if:

 Source code statements have been reordered?
 Source code variables have been eliminated?
 Code is inlined?

 In general, the more optimization there is, the
more complex the back-mapping is from the
target code to the source code … which can
confuse a programmer

 a

6

31

Summary of optimization
 Larger scope of analysis yields better results

 Most of today’s optimizing compilers work at the
intraprocedural level, with some doing some work at the
interprocedural level

 Optimizations are usually organized as collections of
passes

 The presence of optimizations may make other parts
of the compiler (e.g., code gen) easier to write
 E.g., use a simple instruction selection algorithm, knowing

that the optimizer can, in essence, act to improve these
instruction selections

