
Craig Chambers 233 CSE 401

Optimizations

Identify inefficiencies in intermediate or target code

Replace with equivalent but better sequences

• equivalent = "has the same externally visible behavior"

Target-independent optimizations best done on IL code

Target-dependent optimizations best done on target code

“Optimize” overly optimistic

• “usually improve” better

Craig Chambers 234 CSE 401

An example

Source code:

x = a[i] + b[2];
c[i] = x - 5;

Intermediate code (if array indexing calculations explicit):

t1 = *(fp + ioffset); // i

t2 = t1 * 4;
t3 = fp + t2;
t4 = *(t3 + aoffset); // a[i]

t5 = 2;
t6 = t5 * 4;
t7 = fp + t6;
t8 = *(t7 + boffset); // b[2]

t9 = t4 + t8;

*(fp + xoffset) = t9; // x = ...

t10 = *(fp + xoffset); // x
t11 = 5;
t12 = t10 - t11;

t13 = *(fp + ioffset); // i
t14 = t13 * 4;
t15 = fp + t14;
*(t15 + coffset) = t15; // c[i] := ...

Craig Chambers 235 CSE 401

Kinds of optimizations

Scope of study for optimizations:

• peephole:
look at adjacent instructions

• local:
look at straight-line sequence of statements

• global (intraprocedural):
look at whole procedure

• interprocedural:
look across procedures

Larger scope ⇒ better optimization, but more cost & complexity

Craig Chambers 236 CSE 401

Peephole optimization

After code generation, look at adjacent instructions
(a “peephole” on the code stream)

• try to replace adjacent instructions with something faster

Example:

sw $8, 12($fp)
lw $12, 12($fp)

⇒
sw $8, 12($fp)
mv $12, $8

Craig Chambers 237 CSE 401

More examples

On 68k:

sub sp, 4, sp
mov r1, 0(sp)

⇒
mov r1, -(sp)

mov 12(fp), r1
add r1, 1, r1
mov r1, 12(fp)

⇒
inc 12(fp)

Do complex instruction selection through peephole optimization

Craig Chambers 238 CSE 401

Peephole optimization of jumps

Eliminate jumps to jumps

Eliminate jumps after conditional branches

“Adjacent” instructions = “adjacent in control flow”

Source code:

if (a < b) {
if (c < d) {

// do nothing
} else {

stmt1;
}

} else {
stmt2;

}

IL code:

Craig Chambers 239 CSE 401

Algebraic simplifications

“constant folding”, “strength reduction”

z = 3 + 4;

z = x + 0;

z = x * 1;

z = x * 2;

z = x * 8;

z = x / 8;

double x, y, z;

z = (x + y) - y;

Can be done by peephole optimizer, or by code generator

Craig Chambers 240 CSE 401

Local optimization

Analysis and optimizations within a basic block

Basic block: straight-line sequence of statements

• no control flow into or out of middle of sequence

Better than peephole

Not too hard to implement

Machine-independent, if done on intermediate code

Craig Chambers 241 CSE 401

Local constant propagation

If variable assigned a constant,
replace downstream uses of the variable with constant

Can enable more constant folding

Example:

final int count = 10;
...
x = count * 5;
y = x ^ 3;

Unoptimized intermediate code:

t1 = 10;
t2 = 5;
t3 = t1 * t2;
x = t3;

t4 = x;
t5 = 3;
t6 = exp(t4, t5);
y = t6;

Craig Chambers 242 CSE 401

Local dead assignment elimination

If l.h.s. of assignment never referenced again before being
overwritten, then can delete assignment

E.g. clean-up after previous optimizations

Example:

final int count = 10;
...
x = count * 5;
y = x ^ 3;

x = 7;

Intermediate code after constant propagation:

t1 = 10;
t2 = 5;
t3 = 50;
x = 50;

t4 = 50;
t5 = 3;
t6 = 125000;
y = 125000;

x = 7;

Craig Chambers 243 CSE 401

Local common subexpression elimination

Avoid repeating the same calculation

• CSE of repeated loads: redundant load elimination

Keep track of available expressions

Source:

... a[i] + b[i] ...

Unoptimized intermediate code:

t1 = *(fp + ioffset);
t2 = t1 * 4;
t3 = fp + t2;
t4 = *(t3 + aoffset);

t5 = *(fp + ioffset);
t6 = t5 * 4;
t7 = fp + t6;
t8 = *(t7 + boffset);

t9 = t4 + t8;

