An example typechecking operation

class IntLiteralExpr extends Expr {

int value;

ResolvedType typecheck (CodeSymbolTable st)
throws TypecheckCompilerException {

return ResolvedType.intType() ;

ResolvedType. intType () returns the resolved int type

Craig Chambers 114 CSE 401

/

An example typechecking operation

class AddExpr extends Expr {
Expr argl;
Expr arg2;

ResolvedType typecheck (CodeSymbolTable st)
throws TypecheckCompilerException {
ResolvedType argl_type = argl.typecheck(st);
ResolvedType arg2_type = arg2.typecheck(st);
argl_type.checkIsInt() ;
arg2_type.checkIsInt();
return ResolvedType.intType() ;

Craig Chambers 116 CSE 401

/

An example typechecking operation

class VarExpr extends Expr {

String name;

ResolvedType typecheck (CodeSymbolTable st)
throws TypecheckCompilerException {
VarInterface iface = st.lookupVar (name) ;

return iface.getType();

Craig Chambers 115 CSE 401

- /

Polymorphism and overloading

Some operations are defined on multiple types

Example: assignment statement: 1hs = rhs;

* works over any lhs & rhs types,
as long as they’re compatible

* works the same way for all such types
Assignment is a polymorphic operation

Another example: equals expression: exprl == expr2

* works if both exprs are ints or both are booleans
(but nothing else, in MiniJava)

e compares integer values if both are ints,
compares boolean values if both are booleans
(works differently for different argument types)

Equality testing is an overloaded operation

Full Java allows methods & constructors to be overloaded, too
¢ different methods can have same name but different
argument types
Java 1.5 supports (parametric) polymorphism via generics:
parameterized classes and methods

Craig Chambers 117 CSE 401

- /




An example overloaded typechecking operation

class EqualExpr extends Expr {
Expr argl;
ExXpr arg2;

ResolvedType typecheck (CodeSymbolTable st)
throws TypecheckCompilerException {
ResolvedType argl_type = argl.typecheck(st);
ResolvedType arg2_type = arg2.typecheck(st);

if (argl_type.isIntType() &&
arg2_type.isIntType()) {

// resolved overloading to int version
return ResolvedType.booleanType() ;

} else if (argl_type.isBooleanType() &&
arg2_type.isBooleanType()) {

// resolved overloading to boolean version
return ResolvedType.booleanType() ;
} else {

throw new TypecheckCompilerException (
"bad overload") ;

Craig Chambers 118 CSE 401

Typechecking extensions in project (2)

Implement typechecking for new statements and expressions:

e IfStmt
¢ else stmt is optional
e ForStmt
¢ loop index variable must be declared to be an int
 initializer & increment expressions must be ints
¢ test expression must be a boolean
e BreakStmt
¢ must be nested in a loop
e DoubleLiteralExpr
¢ result is double
¢ OrExpr
¢ like AndExpr

Craig Chambers 120 CSE 401

.

Typechecking extensions in project (1)

Add resolved type for double

Add resolved type for arrays
* parameterized by element type
Questions:
* when are two array types equal?
* when is one a subtype of another?
¢ when is one assignable to another?

Add symbol table support for static class variable declarations

e StaticVarInterface class
* declareStaticVariable method

Craig Chambers 119 CSE 401

.

Typechecking extensions in project (3)

* ArrayAssignStmt
* array expr must be an array
¢ index expr must be an int
* rhs expr must be assignable to array’s element type
* ArrayLookupExXpr
* array expr must be an array
¢ index expr must be an int
e result is array’s element type
¢ ArrayLengthExpr
* array expr must be an array
e resultis int
¢ ArrayNewExpr
¢ length expr must be an int
* element type must be a legal type
* result is array of given element type

Craig Chambers 121 CSE 401




Typechecking extensions in project (4)

Extend existing operations on ints to also work on doubles

Allow unary operations taking ints (NegateExpr) to be
overloaded on doubles

Allow binary operations taking ints (AddExpr, SubExpr,
MulExpr, DivExpr, LessThanExpr, LessEqualEXpr,
GreaterEqualExpr, GreaterThanExpr, EqualExpr,
NotEqualExpr) to be overloaded on doubles

* also allow mixed arithmetic: if operator invoked on an int
and a double, then implicitly coerce the int to a double
and then use the double version

Extend isAssignableTo to allow ints to be assigned/passed/
returned to doubles, via an implicit coercion

Craig Chambers 122 CSE 401

Type checking terminology

Static vs. dynamic typing
¢ static: checking done prior to execution (e.g. compile-time)
» dynamic: checking during execution

Strong vs. weak typing
 strong: guarantees no illegal operations performed
* weak: can’'t make guarantees

static dynamic

strong

weak

Caveats:
* hybrids are common
* mistaken usages are common
* “untyped,” “typeless” could mean “dynamic” or “weak”

Craig Chambers 123 CSE 401

Type equivalence

When is one type equal to another?

e implemented in MiniJava with
ResolvedType.equals (ResolvedType) method

“Obvious” for atomic types like int, boolean, class types

What about type "constructors" like arrays?

int[] al;
int[] a2;
int[]1[] a3;

boolean[] a4;
Rectangle[] a5;
Rectangle[] ab6;

Parameterized types in Java 1.5:

List<int> 11; List<int> 12; List<List<int>> 13;

InC:
int* pl; int* p2;
struct {int x;} sl; struct {int x;} s2;

typedef struct {int x;} S; S s3; S s4;

Craig Chambers 124 CSE 401

Name vs. structural equivalence

Name equivalence:
two types are equal iff they came from the same textual
occurrence of a type constructor

* implement with pointer equality of ResolvedType
instances

* special case: type synonyms (e.g. typedef) don’t define
new types

* e.g. class types, struct types in C, datatypes in ML

Structural equivalence:
two types are equal iff they have same structure

* if atomic types, then obvious
* if type constructors:
* same constructor
* recursively, equivalent arguments to constructor

* implement with recursive implementation of equals,
or by canonicalization of types when types created then
use pointer equality

* e.g. atomic types, array types, record types in ML

Craig Chambers 125 CSE 401

%




o

Type conversions and coercions

In Java, can explicitly convert
an object of type double to one of type int

* can represent as unary operator
» typecheck, codegen normally

In Java, can implicitly coerce
an object of type int to one of type double

» compiler must insert unary conversion operators,
based on result of type checking

Craig Chambers 126

CSE 401

/

Type casts

In C and Java,
can explicitly cast an object of one type to another

¢ sometimes cast means a conversion
(casts between numeric types)

* sometimes cast means just a change of static type
without doing any computation
(casts between pointer types
or pointer and numeric types)

In C: safety/correctness of casts not checked
* allows writing low-level code that’s type-unsafe

¢ more often used to work around limitations in
C’s static type system

In Java: downcasts from superclass to subclass include
run-time type check to preserve type safety

* static typechecker allows the cast
* codegen introduces run-time check
¢ Java’s main form of dynamic type checking

Craig Chambers 127

CSE 401

%




