

Units of allocation

What are the units of allocation?

- option 1: variables
- option 2: distinct connected def/use chains (live ranges)

Example:

Computing interference graph		Allocating register	s using interference	graph
Construct interference graph as side-effect of live variables analysis • easy if variables are units of allocation		Register allocation via graph coloring: allocating variables to <i>k</i> registers is equivalent to finding a <i>k</i> -coloring of the interference graph		
 Construct incrementally as live vars sets modified when add a new var to live vars set, create edge from new var to all existing vars when merge two live vars sets, add one sets' vars to other set 		 <i>k</i>-coloring: color nodes of graph using up to <i>k</i> colors, adjacent nodes have different colors Optimal graph coloring: NP-complete need algorithms + heuristics to do a decent job in reasonable time 		
Craig Chambers 260	CSE 401	Craig Chambers	270	CSE 401

Spilling

If can't find *k*-coloring of interference graph, must **spill** some variables to stack, until the resulting interference graph is *k*-colorable

Which to spill?

- · least frequently accessed variables
- most conflicting variables (nodes with highest out-degree)

Weighted interference graph:

weight(n) =

- sum over all references (uses and defs) *r* of *n*: execution frequency of *r*
- Try to spill nodes with lowest weight and highest out-degree, if forced to spill

A simple greedy allocation algorithm

For all nodes, in decreasing order of weight:

- try to allocate node to a register, if possible
- if not, allocate to a stack location

Reserve 2-3 scratch registers to use when manipulating nodes allocated to stack locations

Craig Chambers

if all remaining nodes have *k* neighbors, then **blocked**: pick node with lowest weight/degree to spill remove node from graph push it on the stack

while stack not empty:

pop node from stack

put back in graph

if possible, allocate to register different from all its neighbors otherwise, allocate to stack

CSE 401

Handling calling conventions

How should register allocator deal w/ calling conventions?

Simple: calling-convention-oblivious register allocation

- spill all live caller-save registers before call, restore after call
- save all callee-save registers at entry, restore at return

Better: calling-convention-aware register allocation

- add preferred registers for formals, actuals, results
- · variables live across a call interfere with caller-save regs
 - allocator knows to avoid these registers, save/restore code turns into normal spills
 - live range splitting for before/during/after call could be good
- procedure entry "assigns" to all callee-save registers,

Gives limited form of interprocedural register allocation

- leaf routines (try to) use only caller-save registersroutines with calls use callee-save registers for
- variables live across calls

281

CSE 401