
Craig Chambers 178 CSE 401

Other data types

Nested records without implicit pointers, as in C

struct S1 {
int x;

struct S2 {
double y;
S3* z;

} s2;

int w;
} s1;

Unions, as in C

union U {
int x;

double y;
S3* z;
int w;

} u;

Craig Chambers 179 CSE 401

Other data types

Multidimensional arrays: T[][]...

• rectangular matrix?

• array of arrays?

Strings

• null-terminated arrays of characters, as in C

• length-prefixed array of characters, as in Java

Craig Chambers 180 CSE 401

Storage layout

Where to allocate space for each variable/data structure?

Key issue: what is the lifetime (dynamic extent)
of a variable/data structure?

• whole execution of program (global variables)
⇒ static allocation

• execution of a procedure activation (formals, local vars)
⇒ stack allocation

• variable (dynamically-allocated data)
⇒ heap allocation

Craig Chambers 181 CSE 401

Parts of run-time memory

Code/RO data area

• read-only data & machine instruction area

• shared across processes running same program

Static data area

• place for read/write variables at fixed location in memory

• can start out initialized, or zeroed

Heap

• place for dynamically allocated/freed data

• can expand upwards through sbrk system call

Stack

• place for stack-allocated/freed data

• expands/contracts downwards automatically

code/RO data

static data

heap

stack
high addresses

low addresses

Craig Chambers 182 CSE 401

Static allocation

Statically allocate variables/data structures with global lifetime

• global variables in C, static class variables in Java

• static local variables in C, all locals in Fortran

• compile-time constant strings, records, arrays, etc.

• machine code

Compiler uses symbolic address

Linker assigns exact address, patches compiled code

ILGlobalVarDecl to declare statically allocated variable

ILFunDecl to declare function

ILGlobalAddressExpr to compute address of
statically allocated variable or function

Craig Chambers 183 CSE 401

Stack allocation

Stack-allocate variables/data structures with LIFO lifetime

• last-in first-out (stack discipline):
data structure doesn’t outlive previously allocated data
structures on same stack

Activation records usually allocated on a stack

• a stack-allocated a.r. called a stack frame

• frame includes formals, locals, static link of procedure

• dynamic link = stack frame above

Fast to allocate & deallocate storage

Good memory locality

ILVarDecl to declare stack allocated variable

ILVarExpr to reference stack allocated variable

• both with respect to some ILFunDecl

Craig Chambers 184 CSE 401

Problems with stack allocation

Stack allocation works only when can’t have references to stack
allocated data after containing function returns

Violated if first-class functions allowed

(int(*)(int)) curried(int x) {

int nested(int y) { return x+y; }

return &nested;

}

(int(*)(int)) f = curried(3);

(int(*)(int)) g = curried(4);

int a = f(5);

int b = g(6);

// what are a and b?

Craig Chambers 185 CSE 401

Problems with stack allocation

Violated if inner classes allowed

Inner curried(int x) {

class Inner {

int nested(int y) { return x+y; }

};

return new Inner();

}

Inner f = curried(3);

Inner g = curried(4);

int a = f.nested(5);

int b = g.nested(6);

// what are a and b?

Craig Chambers 186 CSE 401

Problems with stack allocation

Violated if pointers to locals allowed

int* addr(int x) { return &x; }

int* p = addr(3);

int* q = addr(4);

int a = (*p) + 5;

int b = (*p) + 6;

// what are a and b?

Craig Chambers 187 CSE 401

Heap allocation

Heap-allocate variables/data structures with unknown lifetime

• new/malloc to allocate space

• delete/free/garbage collection to deallocate space

Heap-allocate activation records (environments at least)
of first-class functions

Put locals with address taken into heap-allocated environment,
or make illegal, or make undefined

Relatively expensive to manage

Can have dangling references, storage leaks if don’t free right

• use automatic garbage collection in place of manual free
to avoid these problems

ILAllocateExpr, ILArrayedAllocateExpr
to allocate heap memory

Garbage collection implicitly frees heap memory

Craig Chambers 188 CSE 401

Parameter passing

When passing arguments, need to support right semantics

An issue: when is argument expression evaluated?

• before call, or if & when needed by callee?

Another issue: what happens if formal assigned in callee?

• effect visible to caller? if so, when?

• what effect in face of aliasing among
arguments, lexically visible variables?

Different choices lead to different representations
for passed arguments and different code to access formals

Craig Chambers 189 CSE 401

Some parameter passing modes

Parameter passing options:

• call-by-value, call-by-sharing

• call-by-reference, call-by-value-result, call-by-result

• call-by-name, call-by-need

• ...

Craig Chambers 190 CSE 401

Call-by-value

If formal is assigned, caller’s value remains unaffected

class C {

int a;

void m(int x, int y) {
x = x + 1;
y = y + a;

}

void n() {
a = 2;
m(a, a);
System.out.println(a);

}
}

Implement by passing copy of argument value

• trivial for scalars: ints, booleans, etc.

• inefficient for aggregates: arrays, records, strings, ...

Craig Chambers 191 CSE 401

Call-by-sharing

If implicitly reference aggregate data via pointer
(e.g. Java, Lisp, Smalltalk, ML, ...)
then call-by-sharing is call-by-value applied to implicit pointer

• “call-by-pointer-value”

class C {

int[] a = new int[10];

void m(int[] x, int[] y) {
x[0] = x[0] + 1;
y[0] = y[0] + a[0];
x = new int[20];

}

void n() {
a[0] = 2;
m(a, a);
System.out.println(a);

}
}

• efficient, even for big aggregates

• assignments of formal to a different aggregate
(e.g. x = ...) don’t affect caller

• updates to contents of aggregate
(e.g. x[...] = ...) visible to caller immediately

Craig Chambers 192 CSE 401

Call-by-reference

If formal is assigned, actual value is changed in caller

• change occurs immediately

class C {

int a;

void m(int& x, int& y) {
x = x + 1;
y = y + a;

}

void n() {
a = 2;
m(a, a);
System.out.println(a);

}
}

Implement by passing pointer to actual

• efficient for big data structures

• references to formal do extra dereference, implicitly

Call-by-value-result: do assign-in, assign-out

• subtle differences if same actual passed to multiple formals

Craig Chambers 193 CSE 401

Call-by-result

Write-only formals, to return extra results;
no incoming actual value expected

• “out parameters”

• formals cannot be read in callee,
actuals don’t need to be initialized in caller

class C {

int a;

void m(int&out x, int&out y) {
x = 1;
y = a + 1;

}

void n() {
a = 2;
int b;
m(b, b);
System.out.println(b);

}
}

Can implement as in call-by-reference or call-by-value-result

Craig Chambers 194 CSE 401

Call-by-name, call-by-need

Variations on lazy evaluation

• only evaluate argument expression if & when needed by
callee function

Supports very cool programming tricks

Hard to implement efficiently in traditional compiler

Incompatible with side-effects
⇒ only in purely functional languages, e.g. Haskell, Miranda

