o

Alternate implementation strategy: compilation

Divide interpreter work into two parts:
e compile-time
* run-time

Compile-time does preprocessing
* perform some computations at compile-time once

* produce an equivalent program that gets run many times

Only advantage over interpreters: faster running programs

Craig Chambers 145 CSE 401

o

Compilation plan

First, translate typechecked ASTs into
linear sequence of simple statements
called intermediate code

* aprogram in an intermediate language (IL)
* source-language, target-language independent

Then, translate intermediate code into target code

Two-step process helps separate concerns

* intermediate code generation from ASTs focuses on
breaking down source-language contructs into simple
and explicit pieces

* target code generation from intermediate code focuses on
constraints of particular target machines

Can write many target code generators (back-ends),
many language-specific front-ends sharing same IL

Can implement optimizer for IL, shared by front- and back-ends

Craig Chambers 147 CSE 401

/

.

Compile-time processing

Decide layout of run-time data values

» use direct reference at precomputed offsets,
not e.g. hash table lookups

Decide where variable contents will be stored
* registers
» stack frame slots at precomputed offsets
* global memory

Generate machine code to do basic operations

* just like interpreting expression,
except generate code that will evaluate it later

Do optimizations across instructions if desired

Craig Chambers 146 CSE 401

%

.

MiniJava’s intermediate language

Want intermediate language to have only simple, explicit
operations, without "helpful" features

* humans won’t write IL programs!
* C-like is good

Use simple declaration primitives
* global functions, global variables
* no classes, no implicit method lookup, no nesting

Use simple data types
* ints, doubles, explicit pointers, records, arrays
* no booleans
* no class types, no implicit class fields

* arrays are naked sequences;
no implicit length or bounds checks

Use explicit gotos instead of control structures
Make all implicit checks explicit (e.g. array bounds checks)

Implement method lookup via explicit data structures and code

Craig Chambers 148 CSE 401

%

MiniJava’s IL (part 1)

Program ::= {GlobalVarDecl} {FunDecl}
GlobalVarDecl ::= Type ID [= Value] ;

Type ::= int | double | * Type
| Type [1 | { {Type ID}/, } | fun

Value ::= Int | Double | & ID
| [{value}/, 1 | { {ID = vValue}/, }

FunDecl ::= Type ID ({Type ID}/,)
{ {VarDecl} {Stmt} }

VarDecl ::= Type ID ;

Stmt ::= Expr ;
LHSExpr = ExXpr ;
iffalse Expr goto Label ;
iftrue Expr goto Label ;

label Label ;

|

|

|

| goto Label ;
|

| throw new Exception(String) ;
|

return Expr ;

Craig Chambers 149 CSE 401

o

/

Intermediate code generation in Minidava

Choose representations for source-level data types
e translate each ResolvedType into ILType(s)

Recursively traverse ASTs, creating corresponding IL program
* Expr ASTs create ILExpr ASTs
* Stmt ASTs create ILStmt ASTs
¢ MethodDecl ASTs create ILFunDecl ASTs
e ClassDecl ASTs create ILGlobalVarDecl ASTs
* Program ASTs create ILProgram ASTs

Traversal parallels typechecking and evaluation traversals

ICG operations on (source) ASTs named lower

IL AST classes in IL subdirectory

Craig Chambers 151 CSE 401

o

MiniJava’s IL (part 2)

Expr ::= LHSExXpr
| Unop Expr
| Expr Binop Expr
| callee ({Expr}/,)
| new Type [[Expr 1]
| Int
| Double
| & ID

LHSExXpr ::= ID
| * Expr
| Expr -> ID [[Expr 1]

Unop ::= -.int | -.double | not | int2double

Binop ::= (+|-|*|/).(int|double)

| (<|<=|>=|>|==|!=).(int |double)

| <.unsigned

Callee ::= ID
| (* Expr)
| String
Craig Chambers 150 CSE 401
- J
/ N
Data type representation (part 1)
What IL type to use for each source type?
* (what operations are we going to need on them?)
int:
boolean
double:
Craig Chambers 152 CSE 401
-)

Data type representation (part 2)

What IL type to use for each source type?
¢ (what operations are we going to need on them?)

Example:
class B {
int i;

D j;

instance of class B:

Craig Chambers 153 CSE 401

Inheritance

How to lay out subclasses?
¢ subclass inherits features of superclass

* subclass can be assigned to variable of superclass’s type
O subclass layout must "match” superclass’s layout

Example:

class B {
int 1i;
D J;

}

class C extends B {
int x;

Fy;

instance of class C:

Craig Chambers 154 CSE 401

Methods

How to translate a method?
Use a function
* name is "mangled": name of class + name of method

Make this an explicit argument

Example:

class B {

int m(int i, double d) { ... body ... }

B’s method m translates to

int B_m(*{...B...} this, int i, double 4d) {
translation of body ... }

Craig Chambers 155 CSE 401

Methods in instances

To support run-time method lookup, need to make method
function pointers accessible from each instance

Build a record of pointers to functions for each class,
with members for each of a class’s methods
(a.k.a. virtual function table, or vtbl)

Example:

class B {

int m(...) { ... }
En(...) { ...}

B’s method record value:
{ *fun m = &B_m, *fun n = &B_n }

Craig Chambers 156 CSE 401

Method inheritance

A subclass inherits all the methods of its superclasses
¢ its method record includes all fields of its superclass

Overriding methods in subclass share same member of
superclass, but change its value

Example:

class B {

int m(...) { ...}
En(...) { ...}
}

class C extends B {

int m(...) { ...}
Fp(...) { ...}

// override

B’s method record value:
{ *fun m = &B_m, *fun n = &B_n }

C’s method record value:

{ *funm = &C_m, *fun n = &B_n, *fun p = &C_p }

Craig Chambers 157 CSE 401

Method calls

Translate a method invocation on an instance into
a lookup in the instance’s vtbl
then an indirect function call

Example:
B b;

b.m(3, 4.5)

Translates to

*{ *{ *fun m, *fun n } vtbl,
int i,
*{...D...} 3 } b;

*{ *fun m, *fun n } b_vtbl = b->vtbl;

*fun b_m = b_vtbl->m;
(*b_m) (b, 3, 4.5)

Craig Chambers 159 CSE 401

Shared method records

Every instance of a class shares same method record value
O each instance stores a pointer to class’s method record

B’s instance layout (type):
*{ *{ *fun m, *fun n } vtbl,
int 1,
*{...D...} 3}

C’s instance layout (type):
*{ *{ *fun m, *fun n, *fun p } vtbl,
int i,
*{...D...} 3,
int x,

*{. ..F...} v}

C’s vibl layout extends B’s
C’s instance layout extends B’s

B instances’ vtbl field initialized to B’s vtbl record
C instances’ vtbl field initialized to C’s vtbl record

Craig Chambers 158 CSE 401

.

Data type representation (part 3)

What IL type to use for each source type?
* (what operations are we going to need on them?)

array of T:

Craig Chambers 160 CSE 401

%

