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Alternate implementation strategy: compilation

Divide interpreter work into two parts:
e compile-time
* run-time

Compile-time does preprocessing
* perform some computations at compile-time once

* produce an equivalent program that gets run many times

Only advantage over interpreters: faster running programs
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Compilation plan

First, translate typechecked ASTs into
linear sequence of simple statements
called intermediate code

* aprogram in an intermediate language (IL)
* source-language, target-language independent

Then, translate intermediate code into target code

Two-step process helps separate concerns

* intermediate code generation from ASTs focuses on
breaking down source-language contructs into simple
and explicit pieces

* target code generation from intermediate code focuses on
constraints of particular target machines

Can write many target code generators (back-ends),
many language-specific front-ends sharing same IL

Can implement optimizer for IL, shared by front- and back-ends
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Compile-time processing

Decide layout of run-time data values

» use direct reference at precomputed offsets,
not e.g. hash table lookups

Decide where variable contents will be stored
* registers
» stack frame slots at precomputed offsets
* global memory

Generate machine code to do basic operations

* just like interpreting expression,
except generate code that will evaluate it later

Do optimizations across instructions if desired
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MiniJava’s intermediate language

Want intermediate language to have only simple, explicit
operations, without "helpful" features

* humans won’t write IL programs!
* C-like is good

Use simple declaration primitives
* global functions, global variables
* no classes, no implicit method lookup, no nesting

Use simple data types
* ints, doubles, explicit pointers, records, arrays
* no booleans
* no class types, no implicit class fields

* arrays are naked sequences;
no implicit length or bounds checks

Use explicit gotos instead of control structures
Make all implicit checks explicit (e.g. array bounds checks)

Implement method lookup via explicit data structures and code
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MiniJava’s IL (part 1)

Program ::= {GlobalVarDecl} {FunDecl}
GlobalVarDecl ::= Type ID [= Value] ;

Type ::= int | double | * Type
| Type [ 1 | { {Type ID}/, } | fun

Value ::= Int | Double | & ID
| [ {value}/, 1 | { {ID = vValue}/, }

FunDecl ::= Type ID ( {Type ID}/, )
{ {VarDecl} {Stmt} }

VarDecl ::= Type ID ;

Stmt ::= Expr ;
LHSExpr = ExXpr ;
iffalse Expr goto Label ;
iftrue Expr goto Label ;

label Label ;

|

|

|

| goto Label ;
|

| throw new Exception( String ) ;
|

return Expr ;
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Intermediate code generation in Minidava

Choose representations for source-level data types
e translate each ResolvedType into ILType(s)

Recursively traverse ASTs, creating corresponding IL program
* Expr ASTs create ILExpr ASTs
* Stmt ASTs create ILStmt ASTs
¢ MethodDecl ASTs create ILFunDecl ASTs
e ClassDecl ASTs create ILGlobalVarDecl ASTs
* Program ASTs create ILProgram ASTs

Traversal parallels typechecking and evaluation traversals

ICG operations on (source) ASTs named lower

IL AST classes in IL subdirectory
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MiniJava’s IL (part 2)

Expr ::= LHSExXpr
| Unop Expr
| Expr Binop Expr
| callee ( {Expr}/, )
| new Type [[ Expr 1]
| Int
| Double
| & ID

LHSExXpr ::= ID
| * Expr
| Expr -> ID [[ Expr 1]

Unop ::= -.int | -.double | not | int2double

Binop ::= (+|-|*|/).(int|double)

| (<|<=|>=|>|==|!=).(int |double)

| <.unsigned

Callee ::= ID
| ( * Expr )
| String
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Data type representation (part 1)
What IL type to use for each source type?
* (what operations are we going to need on them?)
int:
boolean
double:
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Data type representation (part 2)

What IL type to use for each source type?
¢ (what operations are we going to need on them?)

Example:
class B {
int i;

D j;

instance of class B:
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Inheritance

How to lay out subclasses?
¢ subclass inherits features of superclass

* subclass can be assigned to variable of superclass’s type
O subclass layout must "match” superclass’s layout

Example:

class B {
int 1i;
D J;

}

class C extends B {
int x;

Fy;

instance of class C:
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Methods

How to translate a method?
Use a function
* name is "mangled": name of class + name of method

Make this an explicit argument

Example:

class B {

int m(int i, double d) { ... body ... }

B’s method m translates to

int B_m(*{...B...} this, int i, double 4d) {
translation of body ... }
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Methods in instances

To support run-time method lookup, need to make method
function pointers accessible from each instance

Build a record of pointers to functions for each class,
with members for each of a class’s methods
(a.k.a. virtual function table, or vtbl)

Example:

class B {

int m(...) { ... }
En(...) { ...}

B’s method record value:
{ *fun m = &B_m, *fun n = &B_n }
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Method inheritance

A subclass inherits all the methods of its superclasses
¢ its method record includes all fields of its superclass

Overriding methods in subclass share same member of
superclass, but change its value

Example:

class B {

int m(...) { ...}
En(...) { ...}
}

class C extends B {

int m(...) { ...}
Fp(...) { ...}

// override

B’s method record value:
{ *fun m = &B_m, *fun n = &B_n }

C’s method record value:

{ *funm = &C_m, *fun n = &B_n, *fun p = &C_p }
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Method calls

Translate a method invocation on an instance into
a lookup in the instance’s vtbl
then an indirect function call

Example:
B b;

b.m(3, 4.5)

Translates to

*{ *{ *fun m, *fun n } vtbl,
int i,
*{...D...} 3 } b;

*{ *fun m, *fun n } b_vtbl = b->vtbl;

*fun b_m = b_vtbl->m;
(*b_m) (b, 3, 4.5)
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Shared method records

Every instance of a class shares same method record value
O each instance stores a pointer to class’s method record

B’s instance layout (type):
*{ *{ *fun m, *fun n } vtbl,
int 1,
*{...D...} 3}

C’s instance layout (type):
*{ *{ *fun m, *fun n, *fun p } vtbl,
int i,
*{...D...} 3,
int x,

*{. ..F...} v}

C’s vibl layout extends B’s
C’s instance layout extends B’s

B instances’ vtbl field initialized to B’s vtbl record
C instances’ vtbl field initialized to C’s vtbl record
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Data type representation (part 3)

What IL type to use for each source type?
* (what operations are we going to need on them?)

array of T:
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