
Craig Chambers 17 CSE 401

Lexical Analysis / Scanning

Purpose: turn character stream (input program)
into token stream

• parser turns token stream into syntax tree

Token:
group of characters forming basic, atomic chunk of syntax;

a “word”

Whitespace:
characters between tokens that are ignored

Craig Chambers 18 CSE 401

Why separate lexical from syntactic analysis?

Separation of concerns / good design

• scanner:

• handle grouping chars into tokens

• ignore whitespace

• handle I/O, machine dependencies

• parser:

• handle grouping tokens into syntax trees

Restricted nature of scanning allows faster implementation

• scanning is time-consuming in many compilers

Craig Chambers 19 CSE 401

Complications

Most languages today are “free-form”

• layout doesn’t matter

• whitespace separates tokens

Alternatives:

• Fortran: line-oriented, whitespace doesn’t separate

do 10 i = 1.100

.. a loop ..

10 continue

• Haskell: can use identation & layout to imply grouping

Most languages separate scanning and parsing

Alternative: C/C++/Java: type vs. identifier

• parser wants scanner to distinguish names that are types
from names that are variables

• but scanner doesn’t know how things declared -- that’s done
during semantic analysis a.k.a. typechecking!

Craig Chambers 20 CSE 401

Lexemes, tokens, and patterns

Lexeme: group of characters that form a token

Token: class of lexemes that match a pattern

• token may have attributes, if more than one lexeme in token

Pattern: typically defined using a regular expression

• REs are simplest language class that’s powerful enough

Craig Chambers 21 CSE 401

Languages and language specifications

Alphabet: a finite set of characters/symbols

String: a finite, possibly empty sequence of characters in
alphabet

Language: a (possibly empty or infinite) set of strings

Grammar: a finite specification of a set of strings

Language automaton:
a finite machine for accepting a set of strings and rejecting all
others

A language can be specified by many different grammars and
automata

A grammar or automaton specifies only one language

Craig Chambers 22 CSE 401

Classes of languages

Regular languages can be specified by
regular expressions/grammars, finite-state automata (FSAs)

Context-free languages can be specified by
context-free grammars, push-down automata (PDAs)

Turing-computable languages can be specified by
general grammars, Turing machines

all languages

Turing-computable languages

context-free languages

regular languages

Craig Chambers 23 CSE 401

Syntax of regular expressions

Defined inductively

• base cases:

• the empty string (ε or ∈)

• a symbol from the alphabet (e.g. x)

• inductive cases:

• sequence of two RE’s: E1E2
• either of two RE’s: E1|E2
• Kleene closure (zero or more occurrences) of a RE: E*

Notes:

• can use parentheses for grouping

• precedence: * highest, sequence, | lowest

• whitespace insignificant

Craig Chambers 24 CSE 401

Notational conveniences

E+ means 1 or more occurrences of E

Ek means k occurrences of E

[E] means 0 or 1 occurrence of E (optional E)

{E} means E*

not(x) means any character in the alphabet but x

not(E) means any string of characters in the alphabet but
those strings matching E

E1-E2 means any string matching E1 except those matching E2

No additional expressive power through these conveniences

Craig Chambers 25 CSE 401

Naming regular expressions

Can assign names to regular expressions

Can use the name of a RE in the definition of another RE

Examples:

letter ::= a | b | ... | z

digit ::= 0 | 1 | ... | 9

alphanum ::= letter | digit

Grammar-like notation for named RE’s: a regular grammar

Can reduce named RE’s to plain RE by “macro expansion”

• no recursive definitions allowed,
unlike full context-free grammars

Craig Chambers 26 CSE 401

Using regular expressions to specify tokens

Identifiers

ident ::= letter (letter | digit)*

Integer constants

integer ::= digit+

sign ::= + | -

signed_int ::= [sign] integer

Real number constants

real ::= signed_int
[fraction] [exponent]

fraction ::= . digit+

exponent ::= (E|e) signed_int

Craig Chambers 27 CSE 401

More token specifications

String and character constants

string ::= " char* "

character ::= ' char '

char ::= not(" |' |\) | escape

escape ::= \ (" |' |\ |n|r |t |v|b|a)

Whitespace

whitespace ::= <space> | <tab> | <newline> |
comment

comment ::= /* not(*/) */

Craig Chambers 28 CSE 401

Meta-rules

Can define a rule that a legal program is a sequence of tokens
and whitespace

program ::= (token|whitespace)*

token ::= ident | integer | real | string | ...

But this doesn’t say how to uniquely break up an input program
into tokens -- it’s highly ambiguous!

E.g. what tokens to make out of hi2bob?

• one identifier, hi2bob?

• three tokens, hi 2 bob?

• six tokens, each one character long?

The grammar states that it’s legal, but not how tokens should be
carved up from it

Apply extra rules to say how to break up string into sequence of
tokens

• longest match wins

• yield tokens, drop whitespace

Craig Chambers 29 CSE 401

RE specification of initial MiniJava lexical structure

Program ::= (Token | Whitespace)*

Token ::= ID | Integer | ReservedWord |
Operator | Delimiter

ID ::= Letter (Letter | Digit)*

Letter ::= a | ... | z | A | ... | Z

Digit ::= 0 | ... | 9

Integer ::= Digit+

ReservedWord::= class | public | static |
extends | void | int |
boolean | if | else |
while | return | true | false |
this | new | String | main |
System.out.println

Operator ::= + | - | * | / | < | <= | >= |
> | == | != | && | !

Delimiter ::= ; | . | , | = |
(|) | { | } | [|]

Whitespace ::= <space> | <tab> | <newline>

Craig Chambers 30 CSE 401

Building scanners from RE patterns

Convert RE specification into finite state automaton (FSA)

Convert FSA into scanner implementation

• by hand into collection of procedures

• mechanically into table-driven scanner

Craig Chambers 31 CSE 401

Finite state automata

An FSA has:

• a set of states

• one marked the initial state

• some marked final states

• a set of transitions from state to state

• each transition labelled with a symbol from the alphabet or ε

Operate by reading symbols and taking transitions,
beginning with the start state

• if no transition with a matching label is found, reject

When done with input, accept if in final state, reject otherwise

/ /**

not(*) *

not(*,/)

Craig Chambers 32 CSE 401

Determinism

FSA can be deterministic or nondeterministic

Deterministic: always know which way to go

• at most 1 arc leaving a state with particular symbol

• no ε arcs

Nondeterministic: may need to explore multiple paths, only
choose right one later

Example:

0

1 1

1

000

Craig Chambers 33 CSE 401

NFAs vs. DFAs

A problem:

• RE’s (e.g. specifications) map to NFA’s easily

• Can write code from DFA easily

How to bridge the gap?

Can it be bridged?

Craig Chambers 34 CSE 401

A solution

Cool algorithm to translate any NFA into equivalent DFA!

• proves that NFAs aren’t more expressive than DFAs

Plan:

1) Convert RE into NFA [they’re equivalent]

2) Convert NFA into DFA

3) Convert DFA into code

Can be done by hand, or fully automatically

Craig Chambers 35 CSE 401

RE ⇒ NFA

Define by cases

ε

x

E1 E2

E1 | E2

E *

Craig Chambers 36 CSE 401

NFA ⇒ DFA

Problem: NFA can “choose” among alternative paths,
while DFA must have only one path

Solution: subset construction of DFA

• each state in DFA represents set of states in NFA, all that
the NFA might be in during its traversal

Craig Chambers 37 CSE 401

Subset construction algorithm

Given NFA with states and transitions

• label all NFA states uniquely

Create start state of DFA

• label it with the set of NFA states that can be reached by
ε transitions (i.e. without consuming any input)

Process the start state

To process a DFA state S with label {s1,..,sN}:

For each symbol x in the alphabet:

• compute the set T of NFA states reached from any of the
NFA states s1,..,sN by an x transition followed by any
number of ε transitions

• if T not empty:

• if a DFA state has T as a label, add a transition labeled x from S
to T

• otherwise create a new DFA state labeled T, add a transition
labeled x from S to T, and process T

A DFA state is final iff
at least one of the NFA states in its label is final

Craig Chambers 38 CSE 401

DFA ⇒ code

Option 1: implement scanner by hand using procedures

• one procedure for each token

• each procedure reads characters

• choices implemented using if & switch statements

Pros

• straightforward to write by hand

• fast

Cons

• a fair amount of tedious work

• may have subtle differences from language specification

Craig Chambers 39 CSE 401

DFA ⇒ code (cont.)

Option 2: use tool to generate table-driven scanner

• rows: states of DFA

• columns: input characters

• entries: action

• go to new state

• accept token, go to start state

• error

Pros

• convenient for automatic generation

• exactly matches specification, if tool-generated

Cons

• “magic”

• table lookups may be slower than direct code

• but switch statements get compiled into table lookups, so....

• can translate table lookups into switch statements, if beneficial

