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CSE 401: Introduction to Compiler Construction

Text: Modern Compiler Implementation in Java, Second Edition,
by Appel, with Palsberg

Suggested: Compilers - Principles, Techniques, and Tools, by
Aho et al. (the "Dragon Book")

Goals:

• learn principles & practice of language implementation

• brings together theory & pragmatics of previous courses

• understand compile-time vs. run-time processing

• study interactions among:

• language features

• implementation efficiency

• compiler complexity

• architectural features

• gain more experience with object-oriented design & Java

• gain more experience working on a team

Prerequisites: 322, 326, 341, 378

Sign up on course mailing list!

Craig Chambers 2 CSE 401

Course Outline

Compiler front-ends:

• lexical analysis (scanning): characters → tokens

• syntactic analysis (parsing): tokens → abstract syntax trees

• semantic analysis (typechecking): annotate ASTs

Midterm

Compiler back-ends:

• intermediate code generation: ASTs → intermediate code

• target code generation: intermediate code → target code

• run-time storage layout

• target instruction selection

• register allocation

• optimizations

Final

Craig Chambers 3 CSE 401

Project

Start with compiler for MiniJava, written in Java

Add:

• comments

• floating-point values

• arrays

• static (class) variables

• for loops

• break statements

• and more

Completed in stages over the quarter

Strongly encourage working in a 2-person team on project

• but only if joint work, not divided work

Grading based on:

• correctness

• clarity of design & implementation

• quality of test cases
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Grading

Project: 40% total

Homework: 20% total

Midterm: 15%

Final: 25%

Homework & projects due at the start of class

3 free late days, per person, for the whole quarter

• thereafter, 25% off per calendar day late



Craig Chambers 5 CSE 401

An example compilation

Sample (extended) MiniJava program: Factorial.java

// Computes 10! and prints it out

class Factorial {

public static void main(String[] a) {
System.out.println(

new Fac().ComputeFac(10));

    }

}

class Fac {

// the recursive helper function

public int ComputeFac(int num) {
int numAux;

if (num < 1)
numAux = 1;

else
numAux = num * this.ComputeFac(num-1);

return numAux;
}

}
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First step: lexical analysis

“Scanning”, “tokenizing”

Read in characters, clump into tokens

• strip out whitespace & comments in the process
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Specifying tokens: regular expressions

Example:

Ident ::= Letter AlphaNum*

Integer ::= Digit+

AlphaNum ::= Letter | Digit

Letter ::= 'a' | ... | 'z' | 'A' | ... | 'Z'

Digit ::= '0' | ... | '9'
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Second step: syntactic analysis

“Parsing”

Read in tokens, turn into a tree based on syntactic structure

• report any errors in syntax
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Specifying syntax: context-free grammars

EBNF is a popular notation for CFG’s

Example:

Stmt ::= if ( Expr ) Stmt [else Stmt]

| while ( Expr ) Stmt

| ID = Expr;

| ...

Expr ::= Expr + Expr | Expr < Expr | ...

| ! Expr

| Expr . ID ( [Expr {, Expr}] )

| ID

| Integer | ...

| (Expr)

| ...

EBNF specifies concrete syntax of language

Parser usually constructs tree representing abstract syntax of
language
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Third step: semantic analysis

“Name resolution and typechecking”

Given AST:

• figure out what declaration each name refers to

• perform typechecking and other static consistency checks

Key data structure: symbol table

• maps names to info about name derived from declaration

• tree of symbol tables corresponding to nesting of scopes

Semantic analysis steps:

1. Process each scope, top down

2. Process declarations in each scope into symbol table for
scope

3. Process body of each scope in context of symbol table
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Fourth step: intermediate code generation

Given annotated AST & symbol tables,
translate into lower-level intermediate code

Intermediate code is a separate language

• Source-language independent

• Target-machine independent

Intermediate code is simple and regular
⇒ good representation for doing optimizations

Might be a reasonable target language itself, e.g. Java bytecode
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Example

int Fac.ComputeFac(*? this, int num) {

int T1, numAux, T8, T3, T7, T2, T6, T0;

T0 := 1;

T1 := num < T0;

ifnonzero T1 goto L0;

T2 := 1;

T3 := num - T2;

T6 := Fac.ComputeFac(this, T3);

T7 := num * T6;

numAux := T7;

goto L2;

label L0;

T8 := 1;

numAux := T8;

label L2;

return numAux;

}
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Fifth step: target (machine) code generation

Translate intermediate code into target code

Need to do:

• instruction selection: choose target instructions for
(subsequences of) intermediate code instructions

• register allocation: allocate intermediate code variables to
machine registers, spilling excess to stack

• compute layout of each procedure’s stack frame &
other run-time data structures

• emit target code
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Summary of compiler phases

Ideal: many front-ends, many back-ends sharing one
intermediate language

intermediate
form

Optimization

intermediate
form

Code Generation

target
language

Intermediate
Code Generation

Analysis
of input program

Synthesis
of output program

(front-end) (back-end)

Lexical Analysis

Syntactic Analysis

Semantic Analysis

character
stream

token
stream

abstract
syntax

tree

annotated
AST
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Other language processing tools

Compilers translate the input language into
a different, usually lower-level, target language

Interpreters directly execute the input language

• same front-end structure as a compiler

• then evaluate the annotated AST,
or translate to intermediate code and evaluate that

Software engineering tools can resemble compilers

• same front-end structure as a compiler

• then:

• pretty-print/reformat/colorize

• analyze to compute relationships like declarations/uses,
calls/callees, etc.

• analyze to find potential bugs

• aid in refactoring/restructuring/evolving programs
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Engineering issues

Compilers are hard to design so that they are

• fast

• highly optimizing

• extensible & evolvable

• correct

Some parts of compilers can be automatically generated from
specifications, e.g., scanners, parsers, & target code
generators

• generated parts are fast & correct

• specifications are easily evolvable

(Some of my current research is on generating fast, correct
optimizations from specifications.)

Need good management of software complexity


