
Craig Chambers 1 CSE 401

CSE 401: Introduction to Compiler Construction

Text: Modern Compiler Implementation in Java, Second Edition,
by Appel, with Palsberg

Suggested: Compilers - Principles, Techniques, and Tools, by
Aho et al. (the "Dragon Book")

Goals:

• learn principles & practice of language implementation

• brings together theory & pragmatics of previous courses

• understand compile-time vs. run-time processing

• study interactions among:

• language features

• implementation efficiency

• compiler complexity

• architectural features

• gain more experience with object-oriented design & Java

• gain more experience working on a team

Prerequisites: 322, 326, 341, 378

Sign up on course mailing list!

Craig Chambers 2 CSE 401

Course Outline

Compiler front-ends:

• lexical analysis (scanning): characters → tokens

• syntactic analysis (parsing): tokens → abstract syntax trees

• semantic analysis (typechecking): annotate ASTs

Midterm

Compiler back-ends:

• intermediate code generation: ASTs → intermediate code

• target code generation: intermediate code → target code

• run-time storage layout

• target instruction selection

• register allocation

• optimizations

Final

Craig Chambers 3 CSE 401

Project

Start with compiler for MiniJava, written in Java

Add:

• comments

• floating-point values

• arrays

• static (class) variables

• for loops

• break statements

• and more

Completed in stages over the quarter

Strongly encourage working in a 2-person team on project

• but only if joint work, not divided work

Grading based on:

• correctness

• clarity of design & implementation

• quality of test cases

Craig Chambers 4 CSE 401

Grading

Project: 40% total

Homework: 20% total

Midterm: 15%

Final: 25%

Homework & projects due at the start of class

3 free late days, per person, for the whole quarter

• thereafter, 25% off per calendar day late

Craig Chambers 5 CSE 401

An example compilation

Sample (extended) MiniJava program: Factorial.java

// Computes 10! and prints it out

class Factorial {

public static void main(String[] a) {
System.out.println(

new Fac().ComputeFac(10));

 }

}

class Fac {

// the recursive helper function

public int ComputeFac(int num) {
int numAux;

if (num < 1)
numAux = 1;

else
numAux = num * this.ComputeFac(num-1);

return numAux;
}

}

Craig Chambers 6 CSE 401

First step: lexical analysis

“Scanning”, “tokenizing”

Read in characters, clump into tokens

• strip out whitespace & comments in the process

Craig Chambers 7 CSE 401

Specifying tokens: regular expressions

Example:

Ident ::= Letter AlphaNum*

Integer ::= Digit+

AlphaNum ::= Letter | Digit

Letter ::= 'a' | ... | 'z' | 'A' | ... | 'Z'

Digit ::= '0' | ... | '9'

Craig Chambers 8 CSE 401

Second step: syntactic analysis

“Parsing”

Read in tokens, turn into a tree based on syntactic structure

• report any errors in syntax

Craig Chambers 9 CSE 401

Specifying syntax: context-free grammars

EBNF is a popular notation for CFG’s

Example:

Stmt ::= if (Expr) Stmt [else Stmt]

| while (Expr) Stmt

| ID = Expr;

| ...

Expr ::= Expr + Expr | Expr < Expr | ...

| ! Expr

| Expr . ID ([Expr {, Expr}])

| ID

| Integer | ...

| (Expr)

| ...

EBNF specifies concrete syntax of language

Parser usually constructs tree representing abstract syntax of
language

Craig Chambers 10 CSE 401

Third step: semantic analysis

“Name resolution and typechecking”

Given AST:

• figure out what declaration each name refers to

• perform typechecking and other static consistency checks

Key data structure: symbol table

• maps names to info about name derived from declaration

• tree of symbol tables corresponding to nesting of scopes

Semantic analysis steps:

1. Process each scope, top down

2. Process declarations in each scope into symbol table for
scope

3. Process body of each scope in context of symbol table

Craig Chambers 11 CSE 401

Fourth step: intermediate code generation

Given annotated AST & symbol tables,
translate into lower-level intermediate code

Intermediate code is a separate language

• Source-language independent

• Target-machine independent

Intermediate code is simple and regular
⇒ good representation for doing optimizations

Might be a reasonable target language itself, e.g. Java bytecode

Craig Chambers 12 CSE 401

Example

int Fac.ComputeFac(*? this, int num) {

int T1, numAux, T8, T3, T7, T2, T6, T0;

T0 := 1;

T1 := num < T0;

ifnonzero T1 goto L0;

T2 := 1;

T3 := num - T2;

T6 := Fac.ComputeFac(this, T3);

T7 := num * T6;

numAux := T7;

goto L2;

label L0;

T8 := 1;

numAux := T8;

label L2;

return numAux;

}

Craig Chambers 13 CSE 401

Fifth step: target (machine) code generation

Translate intermediate code into target code

Need to do:

• instruction selection: choose target instructions for
(subsequences of) intermediate code instructions

• register allocation: allocate intermediate code variables to
machine registers, spilling excess to stack

• compute layout of each procedure’s stack frame &
other run-time data structures

• emit target code

Craig Chambers 14 CSE 401

Summary of compiler phases

Ideal: many front-ends, many back-ends sharing one
intermediate language

intermediate
form

Optimization

intermediate
form

Code Generation

target
language

Intermediate
Code Generation

Analysis
of input program

Synthesis
of output program

(front-end) (back-end)

Lexical Analysis

Syntactic Analysis

Semantic Analysis

character
stream

token
stream

abstract
syntax

tree

annotated
AST

Craig Chambers 15 CSE 401

Other language processing tools

Compilers translate the input language into
a different, usually lower-level, target language

Interpreters directly execute the input language

• same front-end structure as a compiler

• then evaluate the annotated AST,
or translate to intermediate code and evaluate that

Software engineering tools can resemble compilers

• same front-end structure as a compiler

• then:

• pretty-print/reformat/colorize

• analyze to compute relationships like declarations/uses,
calls/callees, etc.

• analyze to find potential bugs

• aid in refactoring/restructuring/evolving programs

Craig Chambers 16 CSE 401

Engineering issues

Compilers are hard to design so that they are

• fast

• highly optimizing

• extensible & evolvable

• correct

Some parts of compilers can be automatically generated from
specifications, e.g., scanners, parsers, & target code
generators

• generated parts are fast & correct

• specifications are easily evolvable

(Some of my current research is on generating fast, correct
optimizations from specifications.)

Need good management of software complexity

