
CSE 401, © W. L. Ruzzo and UW CSE, 1994-2001 1

CSE401: Optimization

Larry Ruzzo
Spring 2001

Slides by Chambers, Eggers, Notkin, Ruzzo, and others
© W.L. Ruzzo and UW CSE, 1994-2001

2

6RXUFH
3URJUDP

Stream
of characters

Sequence
of tokens

Lexical analysis

Abstract Syntax
Tree (AST)

Syntactic analysis

AST+ and
symbol table

Semantic analysis

AST++ and
symbol table

Storage
layout

Intermediate code
generation

Intermediate
representation

Optimization

Intermediate
representation

Target code generation

Executable
code

7DUJHW
3URJUDP

Prototype compiler structure

3

Optimization

n Identify inefficiencies in target or
intermediate code

n Replace with equivalent but “better”
sequences

n “Optimize” is a lie.
“Usually improve” is more honest.

4

Example
x := a[i] + b[2];

c[i] := x – 5;

t1 := *(fp + ioffset) // i
t2 := t1 * 4
t3 := fp + t2
t4 := *(t3 + aoffset) // a[i]
t5 := 2
t6 := t5 * 4
t7 := fp + t6
t8 := *(t7 + boffset) // b[2]
t9 := t4 + t8
*(fp + xoffset) := t9 // x := …
t10 := *(fp + xoffset) // x
t11 := 5
t12 := t10 – t11
t13 := *(fp + ioffset) // i
t14 := t3 * 4
t15 := fp + t14
*(t15 + coffset) := t15 // c[i] := …

5

Kinds of optimizations

n Scope of analysis is central to what
optimizations can be performed. A larger
scope may expose better optimizations, but is
more complex
n Peephole: look at adjacent instructions

n Local: look at straight-line sequences of
instructions

n Global (intraprocedural): look at whole procedure

n Interprocedural: look across proceduresIn
cr

ea
si

ng
 s

co
pe

,

op
po

rt
un

ity
, a

nd

co
m

pl
ex

ity

6

Peephole

n After codegen, look at a few adjacent
instructions
n Try to replace them with something better

n If you have
sw $8,12($fp)
lw $12,12($fp)

n You can replace it with
sw $8,12($fp)
mv $12,$8

CSE 401, © W. L. Ruzzo and UW CSE, 1994-2001 2

7

Peephole examples: 68k

If you have

sub sp,4,sp
mov r1,0(sp)

mov 12(fp),r1
add r1,1,r1
mov r1,12(fp)

Replace it with

mov r1,-(sp)

inc 12(p)

8

Peephole optimization of jumps

n Eliminate
n Jumps to jumps

n Conditional
branch over
unconditional
branch

n “Adjacent
instructions”
means
“adjacent in
control flow”

if a < b then

if c < d then

do nothing

else

stmt1;

end;

else

stmt2;

end;

if (a<b)goto 1

if (c<d)goto 2

#do nothing

goto 3

2:stmt1

3:

goto 4

1:stmt2

4:

9

How to do peephole opts

n Could be done at IR and/or target level
n Catalog of specific code rewrite

templates
n Scan code with moving window looking

for matches

10

Peephole summary

n You could consider peephole
optimization as increasing the
sophistication of instruction selection

n Relatively easy to do
n Relatively easy to extend
n Relatively easy to ensure correctness
n Relatively high payoff

11

Algebraic simplifications
by peephole or codegen

n “constant folding” and “strength
reduction” are common names for this
kind of optimization
n z := 3 + 4
n z := x + 0
z := x * 1

n z := x * 2
z := x * 8
z := x / 8

n float x,y;
z := (x + y) – y;

12

n Analysis and optimizations within a basic
block

A basic block is a straight-line sequence
of statements with no control flow into or
out of the middle of the sequence

n Local optimizations are more powerful than
peephole (e.g., block may be longer than peephole window)

n Not too hard to implement
n Can be machine-independent, if done on

intermediate code

Local optimization

CSE 401, © W. L. Ruzzo and UW CSE, 1994-2001 3

13

Local constant propagation

n If a constant is assigned to a variable,
replace downstream uses of the
variable with the constant

n Aka "constant folding"
n May enable further constant folding

14

Example

const count : int = 10;

…

x := count * 5;

y := x ^ 3;

t1 := 10

t2 := 5

t3 := t1 * t2

x := t3

t4 := x

t5 := 3

t6 := exp(t4,t5)

y := t6

15

Local dead assignment elimination

n If the left hand side of an assignment is
never read again before being
overwritten, then remove the
assignment

n This sometimes happens while cleaning
up from other optimizations (as with
many of the optimizations we consider)

16

Example

const count : int = 10;

…

x := count * 5;

y := x ^ 3;

x := input;

x := 50
t6 := exp(50,3)
y := t6
x := input()

Intermediate code after
constant propagation

17

Common subexpression elimination

n Avoid repeating the same calculation
n Requires keeping track of available

expressions

18

CSE example: … a[i] + b[i]…

t1 := *(fp + ioffset)

t2 := t1 * 4

t3 := fp + t2

t4 := *(t3 + aoffset)

t5 := *(fp + ioffset)

t6 := t5 * 4

t7 := fp + t6

t8 := *(t7 + boffset)

t9 := t4 + t8

CSE 401, © W. L. Ruzzo and UW CSE, 1994-2001 4

19

Next
n Intraprocedural optimizations

n Code motion
n Loop induction variable elimination
n Global register allocation

n Interprocedural optimizations
n Inlining

n After that…how to implement these
optimizations

n One more kind of optimization, way beyond
the scope of this class: dynamic compilation

20

Intraprocedural optimizations

n Enlarge scope of analysis to entire procedure
n Provides more opportunities for optimization

n Have to deal with branches, merges and loops

n Can do constant propagation, common
subexpression elimination, etc. at this level

n Can do new things, too, like
loop optimizations

n Optimizing compilers usually work at this level

21

Code motion

n Goal: move loop-invariant calculations
out of loops

n Can do this at the source or
intermediate code level

for i := 1 to 10 do
a[i] := a[i] + b[j];
z := z + 10000

end

22

At intermediate code level
for i := 1 to 10
do
a[i] := b[j];

end

*(fp+ioffset) := 1
_l0:
if *(fp+ioffset) > 10 goto _l1
t1 := *(fp+joffset)
t2 := t1*4
t3 := fp+t2
t4 := *(t3+boffset)
t5 := *(fp+ioffset)
t6 := t5*4
t7 := fp+t6
*(t7+aoffset) := t4
t8 := *(fp+ioffset)
t9 := t8+1
*(fp+ioffset) := t9
goto _l0

_l1:

23

Loop induction variable elimination

n For-loop index is an induction variable
n Incremented each time through the loop

n Offsets, pointers calculated from it

n If used only to index arrays, can rewrite with
pointers
n Compute initial offsets, pointers before loop

n Increment offsets, pointers each time around loop

n No expensive scaling in the loop

24

Example
for i := 1 to 10 do
a[i] := a[i] + x;

end

for p := &a[1] to &a[10] do
*p := *p + x;

end

CSE 401, © W. L. Ruzzo and UW CSE, 1994-2001 5

25

Global register allocation
n Try to allocate local

variables to registers
n If two locals don’t

overlap, then give
them the same
register

n Try to allocate most
frequently used
variables to registers
first

proc f(n:int,x:int):int;
var sum: int, i:int;

begin
sum := x;
for i := 1 to n do
sum := sum + i;

end
return sum;

end f;

26

Register allocation by coloring

n As before, IR gen as if infinite regs avail
n Build interference graph:

x := a+5;
y := b*2;
z := x/3;

a := y-2;

n Colorable with few colors (regs)?
nNP-hard, but …

n If not, pick a node & generate spill code

x z

y

27

Interprocedural opt: Issues
procedure P() {

x: int;

x := 10;

Q();

x:= x+1;

if x == 11 then
…

n Q()

n Q(x by value)

n Q(x by reference)
n Q(const x by reference)

n Q(), but Q declared in P

n …

28

Interprocedural optimizations
n What happens if we expand the scope of the

optimizer to include procedures calling each
other
n In the broadest scope, this is optimization of the

program as a whole

n We can do local, intraprocedural
optimizations at a bigger scope
n For example, constant propagation

n But we can also do entirely new
optimizations, such as inlining

29

Inlining
Replace procedure call with the body of the called

procedure

const pi:real := 3.14159;

proc area(rad:int):int;

begin

return pi*(rad^2);

end;

…

r := 5;

…

output := area(r);

const pi:real := 3.14159;

proc area(rad:int):int;

begin

return pi*(rad^2);

end;

…

r := 5;

…

output := pi*(r^2);

30

Questions about inlining:
few answers

n How to decide where the payoff is
sufficient to inline?
n The real decision depends on dynamic

information about frequency of calls

n In most cases, inlining causes the code
size to increase; when is this
acceptable?

n Others?

CSE 401, © W. L. Ruzzo and UW CSE, 1994-2001 6

31

Optimization and debugging
n Debugging optimized code is often hard
n For example, what if:

n Source code statements have been reordered?
n Source code variables have been eliminated?
n Code is inlined?

n In general, the more optimization there is, the
more complex the back-mapping is from the
target code to the source code … which can
confuse a programmer

32

Summary of optimization
n Larger scope of analysis yields better results

n Most of today’s optimizing compilers work at the
intraprocedural level, with some doing some work at the
interprocedural level

n Optimizations are usually organized as collections of
passes

n The presence of optimizations may make other parts
of the compiler (e.g., code gen) easier to write
n E.g., use a simple instruction selection algorithm, knowing

that the optimizer can, in essence, act to improve these
instruction selections

